IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5629-d630961.html
   My bibliography  Save this article

The Assessment of Energy Efficiency versus Planning of Rail Freight Traffic: A Case Study on the Example of Poland

Author

Listed:
  • Piotr Gołębiowski

    (Faculty of Transport, Warsaw University of Technology, 00662 Warsaw, Poland)

  • Marianna Jacyna

    (Faculty of Transport, Warsaw University of Technology, 00662 Warsaw, Poland)

  • Andrzej Stańczak

    (PKP CargoTabor Sp. z o.o., Management and Production Planning Office, 02021 Warsaw, Poland)

Abstract

The issues addressed by the article concern the assessment of energy efficiency in rail transport, resulting from the proper organization of rail traffic. The problems related to energy consumption and, thus, the negative impact of rail transport on the natural environment are highly significant in terms of the green deal concept, climate change and sustainable development. In this article, energy efficiency is investigated in the context of minimizing the energy consumption necessary to satisfy a specific transport requirement. The essence of this article is to present an approach to energy-efficient planning of rail freight traffic. This article aims to develop a method covers the allocation of railway vehicles dedicated to freight traffic (locomotives and railcars) to perform a defined transport task, taking into account the energy efficiency assessment of the solution, routing the train launched with regard to the accomplishment of the defined transport task on the railway network, and determining the conditions of transport for a defined transport task, taking into account the allocated rolling stock (locomotives and railcars) and the route. In this article, based on the presented state of knowledge, a decision-making model has been proposed, including the model’s parameters, the values being searched for, indicators for assessing the quality of the solution, as well as the limitations and boundary conditions of the problem. The function of minimizing the energy consumption necessary to transport a shipment within the railway network (determining the energy efficiency of the proposed solution) has been proposed as the criterion. In addition, a description of the proprietary method of selecting rolling stock for accomplishing tasks, based on the assessment of the energy efficiency of the solution and a case study illustrating the operation of the method on the example of the area of Poland, has been presented.

Suggested Citation

  • Piotr Gołębiowski & Marianna Jacyna & Andrzej Stańczak, 2021. "The Assessment of Energy Efficiency versus Planning of Rail Freight Traffic: A Case Study on the Example of Poland," Energies, MDPI, vol. 14(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5629-:d:630961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    2. Ruzzenenti, F. & Basosi, R., 2009. "Evaluation of the energy efficiency evolution in the European road freight transport sector," Energy Policy, Elsevier, vol. 37(10), pages 4079-4085, October.
    3. Meng, Fanxin & Liu, Gengyuan & Yang, Zhifeng & Casazza, Marco & Cui, Shenghui & Ulgiati, Sergio, 2017. "Energy efficiency of urban transportation system in Xiamen, China. An integrated approach," Applied Energy, Elsevier, vol. 186(P2), pages 234-248.
    4. Abbink, E.J.W., 2008. "Solving large scale crew scheduling problems by using iterative partitioning," Econometric Institute Research Papers EI 2008-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Boban Djordjević & Evelin Krmac, 2019. "Evaluation of Energy-Environment Efficiency of European Transport Sectors: Non-Radial DEA and TOPSIS Approach," Energies, MDPI, vol. 12(15), pages 1-27, July.
    6. Teodor Gabriel Crainic & Michael Florian & José-Eugenio Léal, 1990. "A Model for the Strategic Planning of National Freight Transportation by Rail," Transportation Science, INFORMS, vol. 24(1), pages 1-24, February.
    7. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    8. Olli‐Pekka Hilmola, 2007. "European railway freight transportation and adaptation to demand decline," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 56(3), pages 205-225, March.
    9. Teodor Crainic & Jacques-A. Ferland & Jean-Marc Rousseau, 1984. "A Tactical Planning Model for Rail Freight Transportation," Transportation Science, INFORMS, vol. 18(2), pages 165-184, May.
    10. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    11. Mihaela Popescu & Alexandru Bitoleanu, 2019. "A Review of the Energy Efficiency Improvement in DC Railway Systems," Energies, MDPI, vol. 12(6), pages 1-25, March.
    12. Zhang, Congyu & Ho, Shih-Hsin & Chen, Wei-Hsin & Fu, Yujie & Chang, Jo-Shu & Bi, Xiaotao, 2019. "Oxidative torrefaction of biomass nutshells: Evaluations of energy efficiency as well as biochar transportation and storage," Applied Energy, Elsevier, vol. 235(C), pages 428-441.
    13. Abbink, E.J.W. & Albino, L. & Dollevoet, T.A.B. & Huisman, D. & Roussado, J. & Saldanha, R.L., 2010. "Solving Large Scale Crew Scheduling Problems in Practice," Econometric Institute Research Papers EI 2010-63, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Jacek Kukulski & Piotr Gołębiowski & Jacek Makowski & Ilona Jacyna-Gołda & Jolanta Żak, 2021. "Effective Method for Diagnosing Continuous Welded Track Condition Based on Experimental Research," Energies, MDPI, vol. 14(10), pages 1-22, May.
    15. Piotr Gołębiowski & Jolanta Żak & Ilona Jacyna-Gołda, 2020. "Approach to the Proecological Distribution of the Traffic Flow on the Transport Network from the Point of View of Carbon Dioxide," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    16. Marek Stawowy & Adam Rosiński & Mirosław Siergiejczyk & Krzysztof Perlicki, 2021. "Quality and Reliability-Exploitation Modeling of Power Supply Systems," Energies, MDPI, vol. 14(9), pages 1-16, May.
    17. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    18. Wang, Ning & Shen, Ruifang & Wen, Zongguo & De Clercq, Djavan, 2019. "Life cycle energy efficiency evaluation for coal development and utilization," Energy, Elsevier, vol. 179(C), pages 1-11.
    19. Lindholm, Maria & Behrends, Sönke, 2012. "Challenges in urban freight transport planning – a review in the Baltic Sea Region," Journal of Transport Geography, Elsevier, vol. 22(C), pages 129-136.
    20. Kwon, Oh Kyoung & Martland, Carl D. & Sussman, Joseph M., 1998. "Routing and scheduling temporal and heterogeneous freight car traffic on rail networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(2), pages 101-115, June.
    21. Adrián Fernández-Rodríguez & Antonio Fernández-Cardador & Asunción P. Cucala & Maria Carmen Falvo, 2019. "Energy Efficiency and Integration of Urban Electrical Transport Systems: EVs and Metro-Trains of Two Real European Lines," Energies, MDPI, vol. 12(3), pages 1-20, January.
    22. Crainic, Teodor Gabriel & Roy, Jacques, 1988. "OR tools for tactical freight transportation planning," European Journal of Operational Research, Elsevier, vol. 33(3), pages 290-297, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qigang Zhu & Yifan Liu & Ming Liu & Shuaishuai Zhang & Guangyang Chen & Hao Meng, 2021. "Intelligent Planning and Research on Urban Traffic Congestion," Future Internet, MDPI, vol. 13(11), pages 1-17, November.
    2. Jarosław Łukasiak & Michał Wiśnios & Adam Rosiński, 2023. "Method for Evaluating the Effectiveness of Electrical Circuit Protection with Miniature Fuse-Links," Energies, MDPI, vol. 16(2), pages 1-28, January.
    3. Krzysztof Jakubowski & Jacek Paś & Adam Rosiński, 2021. "The Issue of Operating Security Systems in Terms of the Impact of Electromagnetic Interference Generated Unintentionally," Energies, MDPI, vol. 14(24), pages 1-17, December.
    4. Martin Chýle & Michal Drábek, 2023. "Efficient Deployment of Dual Locomotives in Regional Freight Rail Transport," Energies, MDPI, vol. 16(5), pages 1-21, February.
    5. Mihaela Popescu, 2022. "Energy Efficiency in Electric Transportation Systems," Energies, MDPI, vol. 15(21), pages 1-5, November.
    6. Jarosław Łukasiak & Adam Rosiński & Michał Wiśnios, 2021. "The Impact of Temperature of the Tripping Thresholds of Intrusion Detection System Detection Circuits," Energies, MDPI, vol. 14(20), pages 1-17, October.
    7. Elżbieta Szaruga & Elżbieta Załoga & Arkadiusz Drewnowski & Paulina Dąbrosz-Drewnowska, 2023. "Convergence of Energy Intensity of the Export of Goods by Rail Transport: Linkages with the Spatial Integration and Economic Condition of Countries," Energies, MDPI, vol. 16(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    2. Dall'Orto, Leonardo Campo & Crainic, Teodor Gabriel & Leal, Jose Eugenio & Powell, Warren B., 2006. "The single-node dynamic service scheduling and dispatching problem," European Journal of Operational Research, Elsevier, vol. 170(1), pages 1-23, April.
    3. Crainic, Teodor Gabriel & Laporte, Gilbert, 1997. "Planning models for freight transportation," European Journal of Operational Research, Elsevier, vol. 97(3), pages 409-438, March.
    4. Lanza, Giacomo & Crainic, Teodor Gabriel & Rei, Walter & Ricciardi, Nicoletta, 2021. "Scheduled service network design with quality targets and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 30-46.
    5. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    6. Cassiano A. Isler & Yesid Asaff & Marin Marinov, 2020. "Designing a Geo-Strategic Railway Freight Network in Brazil Using GIS," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    7. Marinov, Marin & Şahin, İsmail & Ricci, Stefano & Vasic-Franklin, Gordana, 2013. "Railway operations, time-tabling and control," Research in Transportation Economics, Elsevier, vol. 41(1), pages 59-75.
    8. Alberto Ceselli & Michael Gatto & Marco E. Lübbecke & Marc Nunkesser & Heiko Schilling, 2008. "Optimizing the Cargo Express Service of Swiss Federal Railways," Transportation Science, INFORMS, vol. 42(4), pages 450-465, November.
    9. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    10. Kroon, L.G. & Huisman, D. & Abbink, E.J.W. & Fioole, P-J. & Fischetti, M. & Maróti, G. & Schrijver, A. & Steenbeek, A. & Ybema, R., 2008. "The new Dutch timetable: The OR revolution," Econometric Institute Research Papers EI 2008-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Chen, C. & Dollevoet, T.A.B. & Zhao, J., 2017. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Econometric Institute Research Papers EI-2017-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    13. Leo Kroon & Dennis Huisman & Erwin Abbink & Pieter-Jan Fioole & Matteo Fischetti & Gábor Maróti & Alexander Schrijver & Adri Steenbeek & Roelof Ybema, 2009. "The New Dutch Timetable: The OR Revolution," Interfaces, INFORMS, vol. 39(1), pages 6-17, February.
    14. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    15. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    16. Greening, Lacy M. & Dahan, Mathieu & Erera, Alan L., 2023. "Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    17. Kraay, David R. & Harker, Patrick T., 1995. "Real-time scheduling of freight railroads," Transportation Research Part B: Methodological, Elsevier, vol. 29(3), pages 213-229, June.
    18. Julien Brunel, 2004. "Stochastic Risk vs. Policy Oriented Uncertainties: The Case of the Alpine Crossings," Post-Print halshs-00095852, HAL.
    19. Fontaine, Pirmin & Crainic, Teodor Gabriel & Jabali, Ola & Rei, Walter, 2021. "Scheduled service network design with resource management for two-tier multimodal city logistics," European Journal of Operational Research, Elsevier, vol. 294(2), pages 558-570.
    20. Boliang Lin & Xingkui Li & Zexi Zhang & Yinan Zhao, 2019. "Optimizing Transport Scheme of High Value-Added Shipments in Regions without Express Train Services," Sustainability, MDPI, vol. 11(21), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5629-:d:630961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.