IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4889-d611924.html
   My bibliography  Save this article

Investigating the Impact of Public Transport Service Disruptions upon Passenger Travel Behaviour—Results from Krakow City

Author

Listed:
  • Arkadiusz Adam Drabicki

    (Department of Transportation Systems, Cracow University of Technology, 31-155 Kraków, Poland)

  • Md Faqhrul Islam

    (Transport Research Institute, Edinburgh Napier University, Edinburgh EH10 5DT, UK)

  • Andrzej Szarata

    (Department of Transportation Systems, Cracow University of Technology, 31-155 Kraków, Poland)

Abstract

Public transport (PT) service disruptions are common and unexpected events which often result in major impediment to passengers’ typical travel routines. However, attitudes and behavioural responses to unexpected PT disruptions are still not fully understood in state-of-the-art research. The objective of this study is to examine how PT users adapt their travel choices and what travel information sources they utilize once they encounter sudden PT service disruptions. To this end, we conduct a passenger survey among PT users in the city of Kraków (Poland), consisting of a series of stated- and revealed-preference questions. Results show that passengers’ reported choices during past PT disruptions mostly involve adjusting the current PT travel routine, exposing a certain bias with their stated choices (which tend to overestimate the probability of modal shifts). Factors influencing travel behaviour shifts include frequency and recency of PT disruption experience, as well as propensity to arrive on-time. With regards to travel information sources, staff announcement and personal experience play an important role in recognizing the emerging disruption, but real-time information (RTI) sources are the most useful in planning the onward journey afterwards. Based on these, we highlight the implications for future RTI policy during PT service disruptions; in particular, the provision of a reliable time estimate until normal service conditions are resumed. Such RTI content could foster passengers’ tendency to use PT services in uncertain conditions, especially as their stated wait time tolerance often matches the actual duration of PT disruptions.

Suggested Citation

  • Arkadiusz Adam Drabicki & Md Faqhrul Islam & Andrzej Szarata, 2021. "Investigating the Impact of Public Transport Service Disruptions upon Passenger Travel Behaviour—Results from Krakow City," Energies, MDPI, vol. 14(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4889-:d:611924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4889/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Levinson & Henry X. Liu & Michael Bell (ed.), 2012. "Network Reliability in Practice," Transportation Research, Economics and Policy, Springer, edition 1, number 978-1-4614-0947-2, June.
    2. Robert Ziółkowski & Zbigniew Dziejma, 2021. "Investigations of the Dynamic Travel Time Information Impact on Drivers’ Route Choice in an Urban Area—A Case Study Based on the City of Bialystok," Energies, MDPI, vol. 14(6), pages 1-14, March.
    3. Guiver, J.W., 2007. "Modal talk: Discourse analysis of how people talk about bus and car travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(3), pages 233-248, March.
    4. Shanjiang Zhu & David M. Levinson, 2012. "Disruptions to Transportation Networks: A Review," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 5-20, Springer.
    5. Greg Marsden & Jillian Anable & Jeremy Shires & Iain Docherty, 2016. "Travel Behaviour Response to Major Transport System Disruptions: Implications for Smarter Resilience Planning," International Transport Forum Discussion Papers 2016/09, OECD Publishing.
    6. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    7. David M. Levinson & Henry Liu & Michael G. H. Bell, 2012. "Introduction to Network Reliability in Practice," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 1-4, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascal Un & Sonia Adelé & Flore Vallet & Jean-Marie Burkhardt, 2022. "How Does My Train Line Run? Elicitation of Six Information-Seeking Profiles of Regular Suburban Train Users," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    2. Elżbieta Macioszek & Anna Granà & Paulo Fernandes & Margarida C. Coelho, 2022. "New Perspectives and Challenges in Traffic and Transportation Engineering Supporting Energy Saving in Smart Cities—A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 15(12), pages 1-8, June.
    3. Katarzyna Solecka & Marcin Kiciński, 2022. "A Multi-Criteria Evaluation of Applications Supporting Public Transport Users," Energies, MDPI, vol. 15(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caterina Malandri & Luca Mantecchini & Filippo Paganelli & Maria Nadia Postorino, 2021. "Public Transport Network Vulnerability and Delay Distribution among Travelers," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    2. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    3. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    4. Dacko, Scott G. & Spalteholz, Carolin, 2014. "Upgrading the city: Enabling intermodal travel behaviour," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 222-235.
    5. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    6. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    7. Marco Diana & Patricia Mokhtarian, 2009. "Grouping travelers on the basis of their different car and transit levels of use," Transportation, Springer, vol. 36(4), pages 455-467, July.
    8. Hoffmann, Christin & Abraham, Charles & White, Mathew P. & Skippon, Stephen M., 2020. "Ambivalent about travel mode choice? A qualitative investigation of car user and non-car user attitudes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 323-338.
    9. Vodopivec, Neža & Miller-Hooks, Elise, 2019. "Transit system resilience: Quantifying the impacts of disruptions on diverse populations," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. M. D. Yap & N. Oort & R. Nes & B. Arem, 2018. "Identification and quantification of link vulnerability in multi-level public transport networks: a passenger perspective," Transportation, Springer, vol. 45(4), pages 1161-1180, July.
    11. Sean Óg Crudden & Simon Berrebi, 2023. "An Open-Source Framework to Implement Kalman Filter Bus Arrival Predictions," Networks and Spatial Economics, Springer, vol. 23(2), pages 429-443, June.
    12. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Shanjiang Zhu & David Levinson & Henry Liu, 2017. "Measuring winners and losers from the new I-35W Mississippi River Bridge," Transportation, Springer, vol. 44(5), pages 905-918, September.
    14. Carlos Carrion & David Levinson, 2012. "Route choice dynamics after a link restoration," Working Papers 000105, University of Minnesota: Nexus Research Group.
    15. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    16. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Schubert, Daniel & Sys, Christa & Vanelslander, Thierry & Roumboutsos, Athena, 2022. "No-queue road pricing: A comprehensive policy instrument for Europe?," Utilities Policy, Elsevier, vol. 78(C).
    18. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
    19. Beirão, Gabriela & Sarsfield Cabral, J.A., 2007. "Understanding attitudes towards public transport and private car: A qualitative study," Transport Policy, Elsevier, vol. 14(6), pages 478-489, November.
    20. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4889-:d:611924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.