IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1767-d342258.html
   My bibliography  Save this article

Flow Shop Providing Frequency Regulation Service in Electricity Market

Author

Listed:
  • Yan Wang

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, China)

  • Congxianzi Pei

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, China)

  • Qiushuo Li

    (Electric Power Research Institute, China Southern Power Grid, Guangzhou 510080, China)

  • Jingbang Li

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Deng Pan

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

  • Ciwei Gao

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Abstract

Electricity cost is one of main production costs for flow shops. Providing frequency regulation services can help electric loads reduce their electricity costs. Previous studies mostly focus on automatic generation control (AGC) strategies for other types of electric loads, such as air conditioners, EVs or battery storage. In this paper, we find flow shops competent to follow regulation signals and avoid interrupts of processing with the help of scheduling optimization. This finding may be an aid for flow shops by availing regulation services to the market and making a profit. Hence, we propose an AGC strategy for optimizing flow shop scheduling, without affecting the operation. To formulate the bidding strategy for flow shops in regulation market, we considered as many relevant factors as possible, including the regulation performance and yield of flow shops, constraints on load power, regulation reserve capacity and machines operation, inventory of each semi-finished product, AGC strategy—as well as the coupling between the bids in both energy market and regulation market. Our case study shows the potential of the methodology proposed in this paper to cut down the electric cost of flow shops and supplies of performance-qualified frequency regulation service.

Suggested Citation

  • Yan Wang & Congxianzi Pei & Qiushuo Li & Jingbang Li & Deng Pan & Ciwei Gao, 2020. "Flow Shop Providing Frequency Regulation Service in Electricity Market," Energies, MDPI, vol. 13(7), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1767-:d:342258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Boqiang & Xu, Lin, 2015. "Energy conservation of electrolytic aluminum industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 676-686.
    2. Costel Emil Cotet & Gicu Calin Deac & Crina Narcisa Deac & Cicerone Laurentiu Popa, 2020. "An Innovative Industry 4.0 Cloud Data Transfer Method for an Automated Waste Collection System," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    3. Xiaohui Zhang & Xinhua Liu & Shufeng Tang & Grzegorz Królczyk & Zhixiong Li, 2019. "Solving Scheduling Problem in a Distributed Manufacturing System Using a Discrete Fruit Fly Optimization Algorithm," Energies, MDPI, vol. 12(17), pages 1-24, August.
    4. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    5. Grein, Arne & Pehnt, Martin, 2011. "Load management for refrigeration systems: Potentials and barriers," Energy Policy, Elsevier, vol. 39(9), pages 5598-5608, September.
    6. Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Escrivá-Escrivá, Guillermo & Domijan, Alexander, 2012. "Evaluation and assessment of demand response potential applied to the meat industry," Applied Energy, Elsevier, vol. 92(C), pages 84-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    2. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    3. Montuori, Lina & Alcázar-Ortega, Manuel, 2021. "Demand response strategies for the balancing of natural gas systems: Application to a local network located in The Marches (Italy)," Energy, Elsevier, vol. 225(C).
    4. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    5. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    6. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    7. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    8. Choy, K.L. & Ho, G.T.S. & Lee, C.K.H. & Lam, H.Y. & Cheng, Stephen W.Y. & Siu, Paul K.Y. & Pang, G.K.H. & Tang, Valerie & Lee, Jason C.H. & Tsang, Y.P., 2016. "A recursive operations strategy model for managing sustainable chemical product development and production," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 262-272.
    9. Boqiang Lin & Zihan Zhang & Fei Ge, 2017. "Energy Conservation in China’s Cement Industry," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    10. Heitkoetter, Wilko & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2020. "Regionalised heat demand and power-to-heat capacities in Germany – An open dataset for assessing renewable energy integration," Applied Energy, Elsevier, vol. 259(C).
    11. Da Xie & Yupu Lu & Junbo Sun & Chenghong Gu & Jilai Yu, 2016. "Optimal Operation of Network-Connected Combined Heat and Powers for Customer Profit Maximization," Energies, MDPI, vol. 9(6), pages 1-17, June.
    12. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    13. Mirade, Pierre-Sylvain & Perret, Bruno & Guillemin, Hervé & Picque, Daniel & Desserre, Béatrice & Montel, Marie-Christine & Corrieu, Georges, 2012. "Quantifying energy savings during cheese ripening after implementation of sequential air ventilation in an industrial cheesemaking plant," Energy, Elsevier, vol. 46(1), pages 248-258.
    14. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    15. Shi, Wenming & Wang, Ganggang & Zhao, Xu & Feng, Xuehao & Wu, Jun, 2018. "Price determination in the electrolytic aluminum industry: The role of electricity prices," Resources Policy, Elsevier, vol. 59(C), pages 274-281.
    16. Rodríguez-García, Javier & Álvarez-Bel, Carlos & Carbonell-Carretero, José-Francisco & Alcázar-Ortega, Manuel & Peñalvo-López, Elisa, 2016. "A novel tool for the evaluation and assessment of demand response activities in the industrial sector," Energy, Elsevier, vol. 113(C), pages 1136-1146.
    17. Boqiang Lin & Weisheng Liu, 2017. "Scenario Prediction of Energy Consumption and CO 2 Emissions in China’s Machinery Industry," Sustainability, MDPI, vol. 9(1), pages 1-18, January.
    18. Mingtao Yao & Zhaoguang Hu & Froylan Sifuentes & Ning Zhang, 2015. "Integrated Power Management of Conventional Units and Industrial Loads in China’s Ancillary Services Scheduling," Energies, MDPI, vol. 8(5), pages 1-23, May.
    19. Li, Qiang & Zhang, Wenjuan & Li, Huiquan & He, Peng, 2017. "CO2 emission trends of China's primary aluminum industry: A scenario analysis using system dynamics model," Energy Policy, Elsevier, vol. 105(C), pages 225-235.
    20. Chowdhury, Naimur Rahman & Paul, Sanjoy Kumar & Sarker, Tapan & Shi, Yangyan, 2023. "Implementing smart waste management system for a sustainable circular economy in the textile industry," International Journal of Production Economics, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1767-:d:342258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.