IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1288-d330869.html
   My bibliography  Save this article

Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses

Author

Listed:
  • Philip Shine

    (Department of Process, Energy and Transport Engineering, Cork Institute of Technology, Cork T12 P928, Ireland)

  • John Upton

    (Animal and Grassland Research and Innovation Centre, Teagasc Moorepark Fermoy, Cork P61 C996, Ireland)

  • Paria Sefeedpari

    (Wageningen Livestock Research, Wageningen University and Research, 6708 WD Wageningen, The Netherlands)

  • Michael D. Murphy

    (Department of Process, Energy and Transport Engineering, Cork Institute of Technology, Cork T12 P928, Ireland)

Abstract

The global consumption of dairy produce is forecasted to increase by 19% per person by 2050. However, milk production is an intense energy consuming process. Coupled with concerns related to global greenhouse gas emissions from agriculture, increasing the production of milk must be met with the sustainable use of energy resources, to ensure the future monetary and environmental sustainability of the dairy industry. This body of work focused on summarizing and reviewing dairy energy research from the monitoring, prediction modelling and analyses point of view. Total primary energy consumption values in literature ranged from 2.7 MJ kg −1 Energy Corrected Milk on organic dairy farming systems to 4.2 MJ kg −1 Energy Corrected Milk on conventional dairy farming systems. Variances in total primary energy requirements were further assessed according to whether confinement or pasture-based systems were employed. Overall, a 35% energy reduction was seen across literature due to employing a pasture-based dairy system. Compared to standard regression methods, increased prediction accuracy has been demonstrated in energy literature due to employing various machine-learning algorithms. Dairy energy prediction models have been frequently utilized throughout literature to conduct dairy energy analyses, for estimating the impact of changes to infrastructural equipment and managerial practices.

Suggested Citation

  • Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1288-:d:330869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pagani, Marco & Vittuari, Matteo & Johnson, Thomas G. & De Menna, Fabio, 2016. "An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna," Agricultural Systems, Elsevier, vol. 145(C), pages 116-126.
    2. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    3. Shine, P. & Scully, T. & Upton, J. & Murphy, M.D., 2019. "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, Elsevier, vol. 250(C), pages 1110-1119.
    4. Refsgaard, Karen & Halberg, Niels & Kristensen, Erik Steen, 1998. "Energy utilization in crop and dairy production in organic and conventional livestock production systems," Agricultural Systems, Elsevier, vol. 57(4), pages 599-630, August.
    5. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-14, February.
    6. Paria Sefeedpari & Shahin Rafiee & Asadollah Akram, 2013. "Application of artificial neural network to model the energy output of dairy farms in Iran," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 9(1), pages 82-91.
    7. Breen, M. & Murphy, M.D. & Upton, J., 2019. "Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms," Applied Energy, Elsevier, vol. 242(C), pages 1697-1711.
    8. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-13, February.
    9. Shine, P. & Scully, T. & Upton, J. & Shalloo, L. & Murphy, M.D., 2018. "Electricity & direct water consumption on Irish pasture based dairy farms: A statistical analysis," Applied Energy, Elsevier, vol. 210(C), pages 529-537.
    10. Thomassen, M.A. & van Calker, K.J. & Smits, M.C.J. & Iepema, G.L. & de Boer, I.J.M., 2008. "Life cycle assessment of conventional and organic milk production in the Netherlands," Agricultural Systems, Elsevier, vol. 96(1-3), pages 95-107, March.
    11. O’Brien, Donal & Shalloo, Laurence & Patton, Joe & Buckley, Frank & Grainger, Chris & Wallace, Michael, 2012. "A life cycle assessment of seasonal grass-based and confinement dairy farms," Agricultural Systems, Elsevier, vol. 107(C), pages 33-46.
    12. Basset-Mens, Claudine & Ledgard, Stewart & Boyes, Mark, 2009. "Eco-efficiency of intensification scenarios for milk production in New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1615-1625, April.
    13. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Honorata Sierocka & Maciej Zajkowski & Grzegorz Hołdyński & Zbigniew Sołjan, 2023. "Characteristics of Electricity Consumption on the Example of Poultry Farming in Poland," Energies, MDPI, vol. 16(1), pages 1-17, January.
    2. Dumiter Florin Cornel & Turcaș Florin Marius & Boiţă Marius, 2023. "Oil Shock Impact Upon Energy Companies Investment Portfolios. Trends and Evolutions in the Energy Consumption Sector," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(1), pages 1-27, March.
    3. Martin Höhendinger & Hans-Jürgen Krieg & Reinhard Dietrich & Stefan Rauscher & Jörn Stumpenhausen & Heinz Bernhardt, 2021. "Impacts of Divergent Moving Drives on Energy Efficiency and Performance of Various AMS in Operative Conditions," Agriculture, MDPI, vol. 11(9), pages 1-10, August.
    4. Oratilwe Penwell Mokoena & Thembelihle Sam Ntuli & Tshepo Ramarumo & Solly Matshonisa Seeletse, 2023. "Sustainability of Rural Small-Scale Farmers Using a Thematic Content-Fed Analytic Hierarchy Process," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    5. Abbate, Stefano & Centobelli, Piera & Cerchione, Roberto, 2023. "The digital and sustainable transition of the agri-food sector," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    6. Chrysanthos Maraveas & Eleni Simeonaki & Dimitrios Loukatos & Konstantinos G. Arvanitis & Thomas Bartzanas & Marianna I. Kotzabasaki, 2023. "Livestock Agriculture Greenhouse Gases for Electricity Production: Recent Developments and Future Perspectives," Energies, MDPI, vol. 16(9), pages 1-49, May.
    7. Philip Shine & Michael D. Murphy & John Upton, 2020. "A Global Review of Monitoring, Modeling, and Analyses of Water Demand in Dairy Farming," Sustainability, MDPI, vol. 12(17), pages 1-20, September.
    8. Theresa Theunissen & Julia Keller & Heinz Bernhardt, 2023. "Mind the Market Opportunity: Digital Energy Management Services for German Dairy Farmers," Agriculture, MDPI, vol. 13(4), pages 1-13, April.
    9. Xinyi Du & Qi Wang & Yingying Zheng & Jinming Gui & Songhuai Du & Zhengxiang Shi, 2023. "Sustainable Planning Strategy of Dairy Farming in China Based on Carbon Emission from Direct Energy Consumption," Agriculture, MDPI, vol. 13(5), pages 1-15, April.
    10. Cox, Jordan & Belding, Scott & Lowder, Travis, 2022. "Application of a novel heat pump model for estimating economic viability and barriers of heat pumps in dairy applications in the United States," Applied Energy, Elsevier, vol. 310(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
    2. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-13, February.
    3. Pagani, Marco & Vittuari, Matteo & Johnson, Thomas G. & De Menna, Fabio, 2016. "An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna," Agricultural Systems, Elsevier, vol. 145(C), pages 116-126.
    4. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    5. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-14, February.
    6. Anna Kuczuk & Janusz Pospolita, 2020. "Sustainable Agriculture – Energy and Emergy Aspects of Agricultural Production," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1000-1018.
    7. Van Middelaar, C.E. & Berentsen, P.B.M. & Dijkstra, J. & De Boer, I.J.M., 2013. "Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters," Agricultural Systems, Elsevier, vol. 121(C), pages 9-22.
    8. Shine, P. & Scully, T. & Upton, J. & Murphy, M.D., 2019. "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, Elsevier, vol. 250(C), pages 1110-1119.
    9. Tiago G. Morais & Ricardo F. M. Teixeira & Nuno R. Rodrigues & Tiago Domingos, 2018. "Carbon Footprint of Milk from Pasture-Based Dairy Farms in Azores, Portugal," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    10. Oudshoorn, Frank W. & Sørensen, Claus Aage G. & de Boer, Imke I.J.M., 2011. "Economic and environmental evaluation of three goal-vision based scenarios for organic dairy farming in Denmark," Agricultural Systems, Elsevier, vol. 104(4), pages 315-325, April.
    11. Hauke F. Deeken & Alexandra Lengling & Manuel S. Krommweh & Wolfgang Büscher, 2023. "Improvement of Piglet Rearing’s Energy Efficiency and Sustainability Using Air-to-Air Heat Exchangers—A Two-Year Case Study," Energies, MDPI, vol. 16(4), pages 1-30, February.
    12. White, Robin R., 2016. "Increasing energy and protein use efficiency improves opportunities to decrease land use, water use, and greenhouse gas emissions from dairy production," Agricultural Systems, Elsevier, vol. 146(C), pages 20-29.
    13. Guyader, Jessie & Little, Shannan & Kröbel, Roland & Benchaar, Chaouki & Beauchemin, Karen A., 2017. "Comparison of greenhouse gas emissions from corn- and barley-based dairy production systems in Eastern Canada," Agricultural Systems, Elsevier, vol. 152(C), pages 38-46.
    14. Sabia, Emilio & Napolitano, Fabio & Claps, Salvatore & De Rosa, Giuseppe & Barile, Vittoria Lucia & Braghieri, Ada & Pacelli, Corrado, 2018. "Environmental impact of dairy buffalo heifers kept on pasture or in confinement," Agricultural Systems, Elsevier, vol. 159(C), pages 42-49.
    15. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Reiner Doluschitz, 2018. "Factors Affecting Global versus Local Environmental and Economic Performance of Dairying: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 10(8), pages 1-21, August.
    16. Breen, M. & Murphy, M.D. & Upton, J., 2019. "Development of a dairy multi-objective optimization (DAIRYMOO) method for economic and environmental optimization of dairy farms," Applied Energy, Elsevier, vol. 242(C), pages 1697-1711.
    17. Meul, Marijke & Van Middelaar, Corina E. & de Boer, Imke J.M. & Van Passel, Steven & Fremaut, Dirk & Haesaert, Geert, 2014. "Potential of life cycle assessment to support environmental decision making at commercial dairy farms," Agricultural Systems, Elsevier, vol. 131(C), pages 105-115.
    18. Mihailescu, E. & Ryan, W. & Murphy, P.N.C. & Casey, I.A. & Humphreys, J., 2015. "Economic impacts of nitrogen and phosphorus use efficiency on nineteen intensive grass-based dairy farms in the South of Ireland," Agricultural Systems, Elsevier, vol. 132(C), pages 121-132.
    19. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    20. O'Brien, D. & Bohan, A. & McHugh, N. & Shalloo, L., 2016. "A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming," Agricultural Systems, Elsevier, vol. 148(C), pages 95-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1288-:d:330869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.