IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p463-d132780.html
   My bibliography  Save this article

A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements

Author

Listed:
  • Giuseppe Todde

    (Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy)

  • Lelia Murgia

    (Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy)

  • Maria Caria

    (Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy)

  • Antonio Pazzona

    (Department of Agricultural Science, University of Sassari, Viale Italia 39, 07100 Sassari, Italy)

Abstract

Dairy cattle farms are continuously developing more intensive systems of management, which require higher utilization of durable and non-durable inputs. These inputs are responsible for significant direct and indirect fossil energy requirements, which are related to remarkable emissions of CO 2 . This study focused on investigating the indirect energy requirements of 285 conventional dairy farms and the related carbon footprint. A detailed analysis of the indirect energy inputs related to farm buildings, machinery and agricultural inputs was carried out. A partial life cycle assessment approach was carried out to evaluate indirect energy inputs and the carbon footprint of farms over a period of one harvest year. The investigation highlights the importance and the weight related to the use of agricultural inputs, which represent more than 80% of the total indirect energy requirements. Moreover, the analyses carried out underline that the assumption of similarity in terms of requirements of indirect energy and related carbon emissions among dairy farms is incorrect especially when observing different farm sizes and milk production levels. Moreover, a mathematical model to estimate the indirect energy requirements of dairy farms has been developed in order to provide an instrument allowing researchers to assess the energy incorporated into farm machinery, agricultural inputs and buildings. Combining the results of this two-part series, the total energy demand (expressed in GJ per farm) results in being mostly due to agricultural inputs and fuel consumption, which have the largest share of the annual requirements for each milk yield class. Direct and indirect energy requirements increased, going from small sized farms to larger ones, from 1302–5109 GJ·y −1 , respectively. However, the related carbon dioxide emissions expressed per 100 kg of milk showed a negative trend going from class <5000 to >9000 kg of milk yield, where larger farms were able to emit 48% less carbon dioxide than small herd size farm (43 vs. 82 kg CO 2 -eq per 100 kg Fat- and Protein-Corrected Milk (FPCM)). Decreasing direct and indirect energy requirements allowed reducing the anthropogenic gas emissions to the environment, reducing the energy costs for dairy farms and improving the efficient utilization of natural resources.

Suggested Citation

  • Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 2: Investigation and Modeling of Indirect Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-13, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:463-:d:132780
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nassiri, Seyed Mehdi & Singh, Surendra, 2009. "Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique," Applied Energy, Elsevier, vol. 86(7-8), pages 1320-1325, July.
    2. Pagani, Marco & Vittuari, Matteo & Johnson, Thomas G. & De Menna, Fabio, 2016. "An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna," Agricultural Systems, Elsevier, vol. 145(C), pages 116-126.
    3. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    4. Meul, Marijke & Van Middelaar, Corina E. & de Boer, Imke J.M. & Van Passel, Steven & Fremaut, Dirk & Haesaert, Geert, 2014. "Potential of life cycle assessment to support environmental decision making at commercial dairy farms," Agricultural Systems, Elsevier, vol. 131(C), pages 105-115.
    5. Schramski, J.R. & Jacobsen, K.L. & Smith, T.W. & Williams, M.A. & Thompson, T.M., 2013. "Energy as a potential systems-level indicator of sustainability in organic agriculture: Case study model of a diversified, organic vegetable production system," Ecological Modelling, Elsevier, vol. 267(C), pages 102-114.
    6. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-14, February.
    7. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    8. O’Brien, Donal & Shalloo, Laurence & Patton, Joe & Buckley, Frank & Grainger, Chris & Wallace, Michael, 2012. "A life cycle assessment of seasonal grass-based and confinement dairy farms," Agricultural Systems, Elsevier, vol. 107(C), pages 33-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    2. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Azeem Khan, 2020. "Energy Efficiency Outlook of New Zealand Dairy Farming Systems: An Application of Data Envelopment Analysis (DEA) Approach," Energies, MDPI, vol. 13(1), pages 1-14, January.
    3. Hauke F. Deeken & Alexandra Lengling & Manuel S. Krommweh & Wolfgang Büscher, 2023. "Improvement of Piglet Rearing’s Energy Efficiency and Sustainability Using Air-to-Air Heat Exchangers—A Two-Year Case Study," Energies, MDPI, vol. 16(4), pages 1-30, February.
    4. Honorata Sierocka & Maciej Zajkowski & Grzegorz Hołdyński & Zbigniew Sołjan, 2023. "Characteristics of Electricity Consumption on the Example of Poultry Farming in Poland," Energies, MDPI, vol. 16(1), pages 1-17, January.
    5. Shaktipada Bhuniya & Biswajit Sarkar & Sarla Pareek, 2019. "Multi-Product Production System with the Reduced Failure Rate and the Optimum Energy Consumption under Variable Demand," Mathematics, MDPI, vol. 7(5), pages 1-20, May.
    6. Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.
    7. Priyanka & Sarla Pareek, 2023. "A sustainable inventory model for stochastic demand using innovative multi-item production system with reduced failure rate," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 844-864, June.
    8. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-14, February.
    9. Juanjuan Cheng & Qian Wang & Huanmin Zhang & Toyohiko Matsubara & Naoki Yoshikawa & Jin Yu, 2022. "Does Farm Size Expansion Improve the Agricultural Environment? Evidence from Apple Farmers in China," Agriculture, MDPI, vol. 12(11), pages 1-23, October.
    10. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    11. Samuel A Sarkodie & Evans B Ntiamoah & Dongmei Li, 2019. "Panel heterogeneous distribution analysis of trade and modernized agriculture on CO2 emissions: The role of renewable and fossil fuel energy consumption," Natural Resources Forum, Blackwell Publishing, vol. 43(3), pages 135-153, August.
    12. Mitali Sarkar & Biswajit Sarkar & Muhammad Waqas Iqbal, 2018. "Effect of Energy and Failure Rate in a Multi-Item Smart Production System," Energies, MDPI, vol. 11(11), pages 1-21, October.
    13. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
    14. Irfanullah Khan & Jihed Jemai & Han Lim & Biswajit Sarkar, 2019. "Effect of Electrical Energy on the Manufacturing Setup Cost Reduction, Transportation Discounts, and Process Quality Improvement in a Two-Echelon Supply Chain Management under a Service-Level Constrai," Energies, MDPI, vol. 12(19), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    2. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    3. Giuseppe Todde & Lelia Murgia & Maria Caria & Antonio Pazzona, 2018. "A Comprehensive Energy Analysis and Related Carbon Footprint of Dairy Farms, Part 1: Direct Energy Requirements," Energies, MDPI, vol. 11(2), pages 1-14, February.
    4. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
    5. David Pérez-Neira & Marta Soler-Montiel & Rosario Gutiérrez-Peña & Yolanda Mena-Guerrero, 2018. "Energy Assessment of Pastoral Dairy Goat Husbandry from an Agroecological Economics Perspective. A Case Study in Andalusia (Spain)," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    6. Pagani, Marco & Vittuari, Matteo & Johnson, Thomas G. & De Menna, Fabio, 2016. "An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna," Agricultural Systems, Elsevier, vol. 145(C), pages 116-126.
    7. Giuseppe Todde & Maria Caria & Filippo Gambella & Antonio Pazzona, 2017. "Energy and Carbon Impact of Precision Livestock Farming Technologies Implementation in the Milk Chain: From Dairy Farm to Cheese Factory," Agriculture, MDPI, vol. 7(10), pages 1-11, September.
    8. Martinho, V.J.P.D., 2020. "Relationships between agricultural energy and farming indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Hideki Murakami & Yukari Matsuse & Koji Mukaigawa & Yushi Tsunoda, 2013. "Product lifecycle and choice of transportation modes: Japan' s evidence of import and export," Discussion Papers 2013-28, Kobe University, Graduate School of Business Administration.
    10. Nathaniel Geiger & Bryan McLaughlin & John Velez, 2021. "Not all boomers: temporal orientation explains inter- and intra-cultural variability in the link between age and climate engagement," Climatic Change, Springer, vol. 166(1), pages 1-20, May.
    11. Desbordes, Rodolphe, 2007. "The sensitivity of U.S. multinational enterprises to political and macroeconomic uncertainty: A sectoral analysis," International Business Review, Elsevier, vol. 16(6), pages 732-750, December.
    12. Zsuzsa Lábiscsák-Erdélyi & Ilona Veres-Balajti & Annamária Somhegyi & Karolina Kósa, 2022. "Self-Esteem Is Independent Factor and Moderator of School-Related Psychosocial Determinants of Life Satisfaction in Adolescents," IJERPH, MDPI, vol. 19(9), pages 1-14, May.
    13. Grzegorz Rybak & Edward Kozłowski & Krzysztof Król & Tomasz Rymarczyk & Agnieszka Sulimierska & Artur Dmowski & Piotr Bednarczuk, 2023. "Algorithms for Optimizing Energy Consumption for Fermentation Processes in Biogas Production," Energies, MDPI, vol. 16(24), pages 1-17, December.
    14. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    15. Vance, Colin & Procher, Vivien, 2013. "Who Does the Shopping? German time-use evidence, 1996-2009," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2357, pages 125-133.
    16. Ahmad, Babor & Rabbani, M. Golam & Shilpa, Nusrat Afrin & Haque, Mohammad Samiul & Rahman, M. Naimur, 2022. "Diversification Of Livelihoods And Its Impact On The Welfare Of Tribal Households In Dinajpur District Of Bangladesh," Bangladesh Journal of Agricultural Economics, Bangladesh Agricultural University, vol. 43(1), June.
    17. Skare, Marinko & Gavurova, Beata & Sinkovic, Dean, 2023. "Regional aspects of financial development and renewable energy: A cross-sectional study in 214 countries," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1142-1157.
    18. George Anastassopoulos, 2003. "MNE subsidiaries versus domestic enterprises: an analysis of their ownership and location-specific advantages," Applied Economics, Taylor & Francis Journals, vol. 35(13), pages 1505-1514.
    19. Colin C. Williams & Ioana Alexandra Horodnic, 2017. "Tackling Bogus Self-Employment: Some Lessons From Romania," Journal of Developmental Entrepreneurship (JDE), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-20, June.
    20. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:463-:d:132780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.