IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v152y2017icp38-46.html
   My bibliography  Save this article

Comparison of greenhouse gas emissions from corn- and barley-based dairy production systems in Eastern Canada

Author

Listed:
  • Guyader, Jessie
  • Little, Shannan
  • Kröbel, Roland
  • Benchaar, Chaouki
  • Beauchemin, Karen A.

Abstract

In Canada, corn silage is increasingly fed to lactating dairy cows at the expense of barley silage and other forages, as its high-energy content can improve animal performance. Moreover, corn silage is known to reduce methanogenesis in the rumen compared to barley silage. A life cycle analysis was conducted to compare whole farm total GHG emission and greenhouse gas (GHG) intensity (kilogram CO2-equivalent per kilogram of milk) of corn- (CS) and barley- (BS) based dairy production systems. For this purpose, a virtual farm representative of typical dairy production systems in Quebec was used to simulate the 6-year lifespan of a dairy cow, from calving to culling. Diets fed to lactating cows consisted of 54.4% corn or barley silage, 5.5% grass hay and 40.1% concentrate (dry matter basis). The impact of silage digestibility (measured as total digestible nutrient [TDN] content) on total GHG emissions of the dairy production system was also assessed. From prior experimental data, milk production was assumed to average 34.7 and 31.9kg/day for lactating cows fed corn and barley silages of medium TDN content respectively. Milk production was also assumed to be positively correlated with the TDN content of diets. To compensate for differences in milk production per cow, the number of cows was adjusted to obtain similar total fat- and protein-corrected milk production between farms. Forage (silage and hay) and grain (barley or corn) were cultivated on-farm whereas all other feed ingredients were purchased. Greenhouse gas emissions were estimated with the Holos model using a “cradle-to-farm gate” approach. Methane (enteric fermentation and manure storage), CO2 (farm operations, production and transportation of purchased feed) and N2O (N degradation from crop residue, manure, N leaching and volatilization) emissions were taken into account. Enteric CH4 was predicted from animal energy requirements and diet composition. Percentage of energy intake lost as CH4 was assumed constant regardless of silage TDN content. When silages having medium TDN content were used, total GHG emission was reduced by 13% with CS compared to BS, despite the fact that the reduction of enteric CH4 emissions with corn silage was partially offset by increased CO2 emissions from the additional purchased feed protein sources (+9%). Within a forage type, increasing silage TDN content reduced GHG intensity. Finally, the GHG intensity of dairy production systems was lower with high digestible barley silage compared to low digestible corn silage showing the importance of producing forages with high digestibility that maximize milk production.

Suggested Citation

  • Guyader, Jessie & Little, Shannan & Kröbel, Roland & Benchaar, Chaouki & Beauchemin, Karen A., 2017. "Comparison of greenhouse gas emissions from corn- and barley-based dairy production systems in Eastern Canada," Agricultural Systems, Elsevier, vol. 152(C), pages 38-46.
  • Handle: RePEc:eee:agisys:v:152:y:2017:i:c:p:38-46
    DOI: 10.1016/j.agsy.2016.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16301500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beauchemin, Karen A. & Henry Janzen, H. & Little, Shannan M. & McAllister, Tim A. & McGinn, Sean M., 2010. "Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study," Agricultural Systems, Elsevier, vol. 103(6), pages 371-379, July.
    2. Verge, X.P.C. & Dyer, J.A. & Desjardins, R.L. & Worth, D., 2007. "Greenhouse gas emissions from the Canadian dairy industry in 2001," Agricultural Systems, Elsevier, vol. 94(3), pages 683-693, June.
    3. Refsgaard, Karen & Halberg, Niels & Kristensen, Erik Steen, 1998. "Energy utilization in crop and dairy production in organic and conventional livestock production systems," Agricultural Systems, Elsevier, vol. 57(4), pages 599-630, August.
    4. O’Brien, Donal & Shalloo, Laurence & Patton, Joe & Buckley, Frank & Grainger, Chris & Wallace, Michael, 2012. "A life cycle assessment of seasonal grass-based and confinement dairy farms," Agricultural Systems, Elsevier, vol. 107(C), pages 33-46.
    5. Flysjö, Anna & Henriksson, Maria & Cederberg, Christel & Ledgard, Stewart & Englund, Jan-Eric, 2011. "The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden," Agricultural Systems, Elsevier, vol. 104(6), pages 459-469, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez-Hess, Pablo S. & Little, Shannan M. & Moate, Peter J. & Jacobs, Joe L. & Beauchemin, Karen A. & Eckard, Richard J., 2019. "A partial life cycle assessment of the greenhouse gas mitigation potential of feeding 3-nitrooxypropanol and nitrate to cattle," Agricultural Systems, Elsevier, vol. 169(C), pages 14-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belflower, Jeff B. & Bernard, John K. & Gattie, David K. & Hancock, Dennis W. & Risse, Lawrence M. & Alan Rotz, C., 2012. "A case study of the potential environmental impacts of different dairy production systems in Georgia," Agricultural Systems, Elsevier, vol. 108(C), pages 84-93.
    2. Raymond L. Desjardins & Devon E. Worth & Xavier P. C. Vergé & Dominique Maxime & Jim Dyer & Darrel Cerkowniak, 2012. "Carbon Footprint of Beef Cattle," Sustainability, MDPI, vol. 4(12), pages 1-23, December.
    3. Philip Shine & John Upton & Paria Sefeedpari & Michael D. Murphy, 2020. "Energy Consumption on Dairy Farms: A Review of Monitoring, Prediction Modelling, and Analyses," Energies, MDPI, vol. 13(5), pages 1-25, March.
    4. Pagani, Marco & Vittuari, Matteo & Johnson, Thomas G. & De Menna, Fabio, 2016. "An assessment of the energy footprint of dairy farms in Missouri and Emilia-Romagna," Agricultural Systems, Elsevier, vol. 145(C), pages 116-126.
    5. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    6. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Marvin Pangborn, 2019. "The Carbon Footprint of Energy Consumption in Pastoral and Barn Dairy Farming Systems: A Case Study from Canterbury, New Zealand," Sustainability, MDPI, vol. 11(17), pages 1-15, September.
    7. Alvarez-Hess, Pablo S. & Little, Shannan M. & Moate, Peter J. & Jacobs, Joe L. & Beauchemin, Karen A. & Eckard, Richard J., 2019. "A partial life cycle assessment of the greenhouse gas mitigation potential of feeding 3-nitrooxypropanol and nitrate to cattle," Agricultural Systems, Elsevier, vol. 169(C), pages 14-23.
    8. Van Middelaar, C.E. & Berentsen, P.B.M. & Dijkstra, J. & De Boer, I.J.M., 2013. "Evaluation of a feeding strategy to reduce greenhouse gas emissions from dairy farming: The level of analysis matters," Agricultural Systems, Elsevier, vol. 121(C), pages 9-22.
    9. Simon Briner & Michael Hartmann & Robert Finger & Bernard Lehmann, 2012. "Greenhouse gas mitigation and offset options for suckler cow farms: an economic comparison for the Swiss case," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(4), pages 337-355, April.
    10. Pervanchon, F. & Bockstaller, C. & Girardin, P., 2002. "Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator," Agricultural Systems, Elsevier, vol. 72(2), pages 149-172, May.
    11. Kraatz, Simone, 2012. "Energy intensity in livestock operations – Modeling of dairy farming systems in Germany," Agricultural Systems, Elsevier, vol. 110(C), pages 90-106.
    12. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    13. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    14. Pogue, Sarah J. & Kröbel, Roland & Janzen, H. Henry & Alemu, Aklilu W. & Beauchemin, Karen A. & Little, Shannan & Iravani, Majid & de Souza, Danielle Maia & McAllister, Tim A., 2020. "A social-ecological systems approach for the assessment of ecosystem services from beef production in the Canadian prairie," Ecosystem Services, Elsevier, vol. 45(C).
    15. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    16. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    17. O'Brien, D. & Bohan, A. & McHugh, N. & Shalloo, L., 2016. "A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming," Agricultural Systems, Elsevier, vol. 148(C), pages 95-104.
    18. Mariarosaria Agostino, 2016. "Organic Agriculture, Greenhouse Gas Emissions and Environmental Efficiency: An Empirical Study on OECD Countries," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(11), pages 1-78, November.
    19. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    20. Agostinho, F. & Oliveira, M.W. & Pulselli, F.M. & Almeida, C.M.V.B. & Giannetti, B.F., 2019. "Emergy accounting as a support for a strategic planning towards a regional sustainable milk production," Agricultural Systems, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:152:y:2017:i:c:p:38-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.