IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p916-d322013.html
   My bibliography  Save this article

Technology Innovation System Analysis of Electricity Smart Metering in the European Union

Author

Listed:
  • Maksymilian Kochański

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland
    Research and Innovation Centre Pro-Akademia; 95-050 Konstantynów Łódzki, Poland)

  • Katarzyna Korczak

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland
    Research and Innovation Centre Pro-Akademia; 95-050 Konstantynów Łódzki, Poland)

  • Tadeusz Skoczkowski

    (Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00-665 Warsaw, Poland)

Abstract

Between 2018 and 2023 the penetration rate of electricity smart meters in the European Union (EU) is expected to grow from approximately 44% to 71%. The unprecedently rapid development of smart metering (SM) as an ICT-enabled technological novelty is progressing in a complex, multi-actor innovation system, which is strongly driven by EU-level institutions and policies. This paper presents the comprehensive Technology Innovation System (TIS) analysis of electricity SM development in the EU, with a focus placed on regulatory aspects. The article identifies the key elements of the SM innovation system (technologies and infrastructures; actors and networks; institutions and policies) and characterises their interaction based on an in-depth desk research and a critical assessment of regulations, statistics and primary and grey literature sources (e.g., market reports). The main enablers and barriers for EU-level SM TIS development are studied. The major driving force for EU-level SM TIS is the clear, yet evolving vision of EU-level actors for the SM deployment, founded on the grounds of energy conservation and empowerment of customers. On the other hand, the major inhibitor is the insufficient regulatory framework for roll-outs at the level of a Member State, which does not fully ensure interoperability, data protection and security standards or organisational effectiveness.

Suggested Citation

  • Maksymilian Kochański & Katarzyna Korczak & Tadeusz Skoczkowski, 2020. "Technology Innovation System Analysis of Electricity Smart Metering in the European Union," Energies, MDPI, vol. 13(4), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:916-:d:322013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/916/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/916/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faruqui, Ahmad & Harris, Dan & Hledik, Ryan, 2010. "Unlocking the [euro]53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment," Energy Policy, Elsevier, vol. 38(10), pages 6222-6231, October.
    2. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    3. Nikoleta Andreadou & Miguel Olariaga Guardiola & Gianluca Fulli, 2016. "Telecommunication Technologies for Smart Grid Projects with Focus on Smart Metering Applications," Energies, MDPI, vol. 9(5), pages 1-35, May.
    4. Colak, Ilhami & Fulli, Gianluca & Sagiroglu, Seref & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2015. "Smart grid projects in Europe: Current status, maturity and future scenarios," Applied Energy, Elsevier, vol. 152(C), pages 58-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Kochański & Katarzyna Korczak & Tadeusz Skoczkowski, 2021. "Enablers and Barriers in the Market-Driven Rollout of Smart Metering: Polish Technology Innovation System Analysis," Energies, MDPI, vol. 14(17), pages 1-28, August.
    2. Xiao-Yu Zhang & Stefanie Kuenzel & José-Rodrigo Córdoba-Pachón & Chris Watkins, 2020. "Privacy-Functionality Trade-Off: A Privacy-Preserving Multi-Channel Smart Metering System," Energies, MDPI, vol. 13(12), pages 1-30, June.
    3. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    4. Lina Montuori & Manuel Alcázar-Ortega, 2021. "District Heating as Demand Response Aggregator: Estimation of the Flexible Potential in the Italian Peninsula," Energies, MDPI, vol. 14(21), pages 1-19, October.
    5. Fouad, M.M. & Kanarachos, Stratis & Allam, Mahmoud, 2022. "Perceptions of consumers towards smart and sustainable energy market services: The role of early adopters," Renewable Energy, Elsevier, vol. 187(C), pages 14-33.
    6. Emilio Ghiani & Riccardo Trevisan & Gian Luca Rosetti & Sergio Olivero & Luca Barbero, 2022. "Energetic and Economic Performances of the Energy Community of Magliano Alpi after One Year of Piloting," Energies, MDPI, vol. 15(19), pages 1-19, October.
    7. Kung, Chih-Chun & Lan, Xiaolong & Yang, Yunxia & Kung, Shan-Shan & Chang, Meng-Shiuh, 2022. "Effects of green bonds on Taiwan's bioenergy development," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    2. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    3. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    4. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    5. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    6. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    7. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    8. Belton, Cameron A. & Lunn, Peter D., 2020. "Smart choices? An experimental study of smart meters and time-of-use tariffs in Ireland," Energy Policy, Elsevier, vol. 140(C).
    9. Katz, Jonas, 2014. "Linking meters and markets: Roles and incentives to support a flexible demand side," Utilities Policy, Elsevier, vol. 31(C), pages 74-84.
    10. Blarke, Morten B. & Jenkins, Bryan M., 2013. "SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?," Energy Policy, Elsevier, vol. 58(C), pages 381-390.
    11. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    12. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    13. Inna Čábelková & Wadim Strielkowski & Irina Firsova & Marina Korovushkina, 2020. "Public Acceptance of Renewable Energy Sources: a Case Study from the Czech Republic," Energies, MDPI, vol. 13(7), pages 1-15, April.
    14. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    15. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    16. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    17. Milchram, Christine & Hillerbrand, Rafaela & van de Kaa, Geerten & Doorn, Neelke & Künneke, Rolf, 2018. "Energy Justice and Smart Grid Systems: Evidence from the Netherlands and the United Kingdom," Applied Energy, Elsevier, vol. 229(C), pages 1244-1259.
    18. Villalobos, Cristian & Negrete-Pincetic, Matías & Figueroa, Nicolás & Lorca, Álvaro & Olivares, Daniel, 2021. "The impact of short-term pricing on flexible generation investments in electricity markets," Energy Economics, Elsevier, vol. 98(C).
    19. Hu, Zheng & Kim, Jin-ho & Wang, Jianhui & Byrne, John, 2015. "Review of dynamic pricing programs in the U.S. and Europe: Status quo and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 743-751.
    20. Arcos-Vargas, A. & Nuñez, F. & Román-Collado, R., 2020. "Short-term effects of PV integration on global welfare and CO2 emissions. An application to the Iberian electricity market," Energy, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:916-:d:322013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.