IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v98y2021ics0140988321001183.html
   My bibliography  Save this article

The impact of short-term pricing on flexible generation investments in electricity markets

Author

Listed:
  • Villalobos, Cristian
  • Negrete-Pincetic, Matías
  • Figueroa, Nicolás
  • Lorca, Álvaro
  • Olivares, Daniel

Abstract

The massive growth in the integration of variable renewable energy sources is producing several challenges in the operation of power systems and its associated markets. In this context, flexibility has become a critical attribute to allow the system to react to changes in generation or demand levels. Thus, it is critical for market signals at both short and long term scales to include flexibility features, to align agents' incentives with systemic flexibility requirements. In this paper, different pricing schemes for short-term markets are studied, based on various relaxations of the unit commitment problem, including convex-hull approximations, with the aim of representing operational flexibility requirements in a more explicit way. Extensive simulations illustrate the performance of the proposed schemes, as compared to conventional ones, in terms of the capability of the system to properly incentivize flexibility attributes, resulting in better agents' cost recovery and more variable renewable energy utilization. The results show that short-term pricing schemes considered improve the long-term signals for flexible investments but additional changes to market design are still required. Thus, there is a need to revisit historical practices for pricing rules by incorporating additional flexibility-related attributes into them. Several alternatives are discussed and policy recommendations based on these considerations are provided.

Suggested Citation

  • Villalobos, Cristian & Negrete-Pincetic, Matías & Figueroa, Nicolás & Lorca, Álvaro & Olivares, Daniel, 2021. "The impact of short-term pricing on flexible generation investments in electricity markets," Energy Economics, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:eneeco:v:98:y:2021:i:c:s0140988321001183
    DOI: 10.1016/j.eneco.2021.105213
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988321001183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roques, Fabien & Finon, Dominique, 2017. "Adapting electricity markets to decarbonisation and security of supply objectives: Toward a hybrid regime?," Energy Policy, Elsevier, vol. 105(C), pages 584-596.
    2. Jacob Mays & David P. Morton & Richard P. O’Neill, 2019. "Asymmetric risk and fuel neutrality in electricity capacity markets," Nature Energy, Nature, vol. 4(11), pages 948-956, November.
    3. Keppler, Jan Horst, 2017. "Rationales for capacity remuneration mechanisms: Security of supply externalities and asymmetric investment incentives," Energy Policy, Elsevier, vol. 105(C), pages 562-570.
    4. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    5. Auer, Hans & Haas, Reinhard, 2016. "On integrating large shares of variable renewables into the electricity system," Energy, Elsevier, vol. 115(P3), pages 1592-1601.
    6. Herrero, Ignacio & Rodilla, Pablo & Batlle, Carlos, 2015. "Electricity market-clearing prices and investment incentives: The role of pricing rules," Energy Economics, Elsevier, vol. 47(C), pages 42-51.
    7. Ralf Gollmer & Matthias Nowak & Werner Römisch & Rüdiger Schultz, 2000. "Unit commitment in power generation – a basic model and some extensions," Annals of Operations Research, Springer, vol. 96(1), pages 167-189, November.
    8. Fabra, Natalia, 2018. "A primer on capacity mechanisms," Energy Economics, Elsevier, vol. 75(C), pages 323-335.
    9. Ramteen Sioshansi and Ashlin Tignor, 2012. "Do Centrally Committed Electricity Markets Provide Useful Price Signals?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. Vazquez, Carlos & Hallack, Michelle & Vazquez, Miguel, 2017. "Price computation in electricity auctions with complex rules: An analysis of investment signals," Energy Policy, Elsevier, vol. 105(C), pages 550-561.
    11. Morales-España, Germán & Ramírez-Elizondo, Laura & Hobbs, Benjamin F., 2017. "Hidden power system inflexibilities imposed by traditional unit commitment formulations," Applied Energy, Elsevier, vol. 191(C), pages 223-238.
    12. Petitet, Marie & Finon, Dominique & Janssen, Tanguy, 2017. "Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism," Energy Policy, Elsevier, vol. 103(C), pages 30-46.
    13. Paul L Joskow, 2019. "Challenges for wholesale electricity markets with intermittent renewable generation at scale: the US experience," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 35(2), pages 291-331.
    14. L.J. De Vries and R.A. Verzijlbergh, 2018. "How Renewable Energy is Reshaping Europes Electricity Market Design," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    15. Tesfatsion, Leigh, 2009. "Auction Basics for Wholesale Power Markets: Objectives and Pricing Rules," Staff General Research Papers Archive 13074, Iowa State University, Department of Economics.
    16. Traber, Thure & Kemfert, Claudia, 2011. "Gone with the wind? -- Electricity market prices and incentives to invest in thermal power plants under increasing wind energy supply," Energy Economics, Elsevier, vol. 33(2), pages 249-256, March.
    17. Ignacio J. Perez-Arriaga & Carlos Batlle, 2012. "Impacts of Intermittent Renewables on Electricity Generation System Operation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    18. O'Neill, Richard P. & Sotkiewicz, Paul M. & Hobbs, Benjamin F. & Rothkopf, Michael H. & Stewart, William R., 2005. "Efficient market-clearing prices in markets with nonconvexities," European Journal of Operational Research, Elsevier, vol. 164(1), pages 269-285, July.
    19. Höschle, Hanspeter & De Jonghe, Cedric & Le Cadre, Hélène & Belmans, Ronnie, 2017. "Electricity markets for energy, flexibility and availability — Impact of capacity mechanisms on the remuneration of generation technologies," Energy Economics, Elsevier, vol. 66(C), pages 372-383.
    20. David Fuller, J. & Çelebi, Emre, 2017. "Alternative models for markets with nonconvexities," European Journal of Operational Research, Elsevier, vol. 261(2), pages 436-449.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian Huang & Kun Liu, 2023. "Impact of Electricity Price Expectation in the Planning Period on the Evolution of Generation Expansion Planning in the Market Environment," Energies, MDPI, vol. 16(8), pages 1-21, April.
    2. Sirin, Selahattin Murat & Camadan, Ercument & Erten, Ibrahim Etem & Zhang, Alex Hongliang, 2023. "Market failure or politics? Understanding the motives behind regulatory actions to address surging electricity prices," Energy Policy, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    2. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    3. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    4. Sirin, Selahattin Murat & Camadan, Ercument & Erten, Ibrahim Etem & Zhang, Alex Hongliang, 2023. "Market failure or politics? Understanding the motives behind regulatory actions to address surging electricity prices," Energy Policy, Elsevier, vol. 180(C).
    5. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    6. Brito-Pereira, Paulo & Rodilla, Pablo & Mastropietro, Paolo & Batlle, Carlos, 2022. "Self-fulfilling or self-destroying prophecy? The relevance of de-rating factors in modern capacity mechanisms," Applied Energy, Elsevier, vol. 314(C).
    7. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    8. Loisel, Rodica & Simon, Corentin, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Energy Policy, Elsevier, vol. 151(C).
    9. Benatia, David, 2022. "Ring the alarm! Electricity markets, renewables, and the pandemic," Energy Economics, Elsevier, vol. 106(C).
    10. Vadim Borokhov, 2022. "Utilizing the redundant constraints for the uplift payment elimination," Operational Research, Springer, vol. 22(2), pages 1377-1402, April.
    11. Sorknæs, P. & Lund, Henrik & Skov, I.R. & Djørup, S. & Skytte, K. & Morthorst, P.E. & Fausto, F., 2020. "Smart Energy Markets - Future electricity, gas and heating markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    13. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Yilun Luo & Esmaeil Ahmadi & Benjamin C. McLellan & Tetsuo Tezuka, 2022. "Will Capacity Mechanisms Conflict with Carbon Pricing?," Energies, MDPI, vol. 15(24), pages 1-25, December.
    15. Verástegui, Felipe & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matias, 2021. "Optimization-based analysis of decarbonization pathways and flexibility requirements in highly renewable power systems," Energy, Elsevier, vol. 234(C).
    16. Muñoz, Francisco D. & Suazo-Martínez, Carlos & Pereira, Eduardo & Moreno, Rodrigo, 2021. "Electricity market design for low-carbon and flexible systems: Room for improvement in Chile," Energy Policy, Elsevier, vol. 148(PB).
    17. Gholami, Mina Bahrami & Poletti, Stephen & Staffell, Iain, 2021. "Wind, rain, fire and sun: Towards zero carbon electricity for New Zealand," Energy Policy, Elsevier, vol. 150(C).
    18. Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.
    19. Billimoria, Farhad & Fele, Filiberto & Savelli, Iacopo & Morstyn, Thomas & McCulloch, Malcolm, 2022. "An insurance mechanism for electricity reliability differentiation under deep decarbonization," Applied Energy, Elsevier, vol. 321(C).
    20. Mays, Jacob & Morton, David P. & O’Neill, Richard P., 2021. "Investment effects of pricing schemes for non-convex markets," European Journal of Operational Research, Elsevier, vol. 289(2), pages 712-726.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:98:y:2021:i:c:s0140988321001183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.