IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6266-d452381.html
   My bibliography  Save this article

To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland

Author

Listed:
  • Paria Sefeedpari

    (Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), 24-100 Puławy, Poland)

  • Rafał Pudełko

    (Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), 24-100 Puławy, Poland)

  • Anna Jędrejek

    (Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), 24-100 Puławy, Poland)

  • Małgorzata Kozak

    (Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), 24-100 Puławy, Poland)

  • Magdalena Borzęcka

    (Department of Bioeconomy and Systems Analysis, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), 24-100 Puławy, Poland)

Abstract

Bioenergy production from animal waste can be a key driver to achieving bio-economy goals. Developing a bio-economy sector could help to create opportunities for a circular system where not only people and the planet will be benefited, but it will also provide economic profitability to farmers, especially in the post-Covid period. To this end, manure production, its nutrient content, and bioenergy potential were estimated, along with their spatial distribution in the Lubelskie province, Poland. Farm-level data were processed and aggregated at the municipality level. Material balance equations were used to calculate the theoretical potential of livestock manure and bioenergy for different use scenarios: (1) Baseline (BC): direct manure application to land, which was compared against (2) Anaerobic Digestion (AD): anaerobic digestion to biogas with digestate returned to the fields (3) AD + Separation (AD + Sep): mechanical separation followed by anaerobic digestion, and (4) Surplus + AD: surplus manure (after application to the fields) is sent to anaerobic digestion. Manure, biogas, electricity, and thermal energy production of the AD scenario were estimated to be 7.5 Mt y −1 , 378 Mm 3 y −1 , 907 GW e y −1 , and 997.8 GW th y −1 , respectively. The scenario, including mechanical separation followed by anaerobic digestion (AD + Sep), contributed to avoiding emissions to the largest extent (1 Mt CO 2 eq), whereas AD outperformed the others in avoiding costs of fertilization. According to the estimated potential and the environmental cost-effectiveness of AD, new plants can be established that will recycle manure through bioenergy production, and, subsequently, the digestate can be applied as organic fertilizer, closing the nutrients cycle.

Suggested Citation

  • Paria Sefeedpari & Rafał Pudełko & Anna Jędrejek & Małgorzata Kozak & Magdalena Borzęcka, 2020. "To What Extent Is Manure Produced, Distributed, and Potentially Available for Bioenergy? A Step toward Stimulating Circular Bio-Economy in Poland," Energies, MDPI, vol. 13(23), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6266-:d:452381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pellerin, Sylvain & Bamière, Laure & Angers, Denis & Béline, Fabrice & Benoit, Marc & Butault, Jean-Pierre & Chenu, Claire & Colnenne-David, Caroline & De Cara, Stéphane & Delame, Nathalie & Doreau, M, 2017. "Identifying cost-competitive greenhouse gas mitigation potential of French agriculture," Environmental Science & Policy, Elsevier, vol. 77(C), pages 130-139.
    2. Batzias, F.A. & Sidiras, D.K. & Spyrou, E.K., 2005. "Evaluating livestock manures for biogas production: a GIS based method," Renewable Energy, Elsevier, vol. 30(8), pages 1161-1176.
    3. Hamelin, Lorie & Borzęcka, Magdalena & Kozak, Małgorzata & Pudełko, Rafał, 2019. "A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 127-142.
    4. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    5. Efstratios Loizou & Piotr Jurga & Stelios Rozakis & Antoni Faber, 2019. "Assessing the Potentials of Bioeconomy Sectors in Poland Employing Input-Output Modeling," Sustainability, MDPI, vol. 11(3), pages 1-12, January.
    6. Sorda, G. & Sunak, Y. & Madlener, R., 2013. "An agent-based spatial simulation to evaluate the promotion of electricity from agricultural biogas plants in Germany," Ecological Economics, Elsevier, vol. 89(C), pages 43-60.
    7. Tévécia Ronzon & Robert M’Barek, 2018. "Socioeconomic Indicators to Monitor the EU’s Bioeconomy in Transition," Sustainability, MDPI, vol. 10(6), pages 1-22, May.
    8. Igliński, Bartłomiej & Buczkowski, Roman & Iglińska, Anna & Cichosz, Marcin & Piechota, Grzegorz & Kujawski, Wojciech, 2012. "Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4890-4900.
    9. Magdalena Muradin & Zenon Foltynowicz, 2014. "Potential for Producing Biogas from Agricultural Waste in Rural Plants in Poland," Sustainability, MDPI, vol. 6(8), pages 1-10, August.
    10. Mattes Scheftelowitz & Daniela Thrän, 2016. "Unlocking the Energy Potential of Manure—An Assessment of the Biogas Production Potential at the Farm Level in Germany," Agriculture, MDPI, vol. 6(2), pages 1-13, April.
    11. Barbara Gemmill-Herren, 2020. "Closing the circle: an agroecological response to covid-19," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 37(3), pages 613-614, September.
    12. Scarlat, Nicolae & Fahl, Fernando & Dallemand, Jean-François & Monforti, Fabio & Motola, Vicenzo, 2018. "A spatial analysis of biogas potential from manure in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 915-930.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandros Yfantis & Nikos Yfantis & Triantafyllia Angelakopoulou & George Giannakakis & Fabien Michelet & Spyros Dokianakis & Evangelia Vasilaki & Nikos Katsarakis, 2022. "Industrial Pilot for Assessment of Polymeric and Ceramic Membrane Efficiency in Treatment of Liquid Digestate from Biogas Power Plant," Energies, MDPI, vol. 15(18), pages 1-16, September.
    2. Marek Cierpiał-Wolan & Jolanta Stec-Rusiecka & Dariusz Twaróg & Katarzyna Bilińska & Anna Dewalska-Opitek & Bogdan Wierzbiński, 2022. "Relationship between Renewable Biogas Energy Sources and Financial Health of Food Business Operators," Energies, MDPI, vol. 15(16), pages 1-13, August.
    3. Stelios Rozakis & Andrea Bartoli & Jacek Dach & Anna Jędrejek & Alina Kowalczyk-Juśko & Łukasz Mamica & Patrycja Pochwatka & Rafał Pudelko & Kesheng Shu, 2021. "Policy Impact on Regional Biogas Using a Modular Modeling Tool," Energies, MDPI, vol. 14(13), pages 1-21, June.
    4. Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
    5. Anna Duczkowska & Ewa Kulińska & Zbigniew Plutecki & Joanna Rut, 2022. "Sustainable Agro-Biomass Market for Urban Heating Using Centralized District Heating System," Energies, MDPI, vol. 15(12), pages 1-23, June.
    6. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    7. Piotr Jurga & Efstratios Loizou & Stelios Rozakis, 2021. "Comparing Bioeconomy Potential at National vs. Regional Level Employing Input-Output Modeling," Energies, MDPI, vol. 14(6), pages 1-17, March.
    8. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    9. Agnieszka Urbanowska & Małgorzata Kabsch-Korbutowicz, 2021. "The Use of Flat Ceramic Membranes for Purification of the Liquid Fraction of the Digestate from Municipal Waste Biogas Plants," Energies, MDPI, vol. 14(13), pages 1-12, July.
    10. Jakub Piecuch & Joanna Szarek, 2022. "Dynamic panel model in bioeconomy modeling," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(1), pages 20-27.
    11. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Dariusz Twaróg & Jarosław Gołębiewski & Sebastian Wójcik, 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland," Energies, MDPI, vol. 14(13), pages 1-21, July.
    12. Stelios Rozakis & Luka Juvančič & Barna Kovacs, 2022. "Bioeconomy for Resilient Post-COVID Economies," Energies, MDPI, vol. 15(8), pages 1-5, April.
    13. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Ramos-Suárez, J.L. & Ritter, A. & Mata González, J. & Camacho Pérez, A., 2019. "Biogas from animal manure: A sustainable energy opportunity in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 137-150.
    3. Alper Bayram & Antonino Marvuglia & Maria Myridinas & Marta Porcel, 2022. "Increasing Biowaste and Manure in Biogas Feedstock Composition in Luxembourg: Insights from an Agent-Based Model," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    4. Venus, Terese E. & Strauss, Felix & Venus, Thomas J. & Sauer, Johannes, 2021. "Understanding stakeholder preferences for future biogas development in Germany," Land Use Policy, Elsevier, vol. 109(C).
    5. Xueqing Yang & Yang Liu & Mei Wang & Alberto Bezama & Daniela Thrän, 2021. "Identifying the Necessities of Regional-Based Analysis to Study Germany’s Biogas Production Development under Energy Transition," Land, MDPI, vol. 10(2), pages 1-20, February.
    6. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).
    7. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    8. Mauricio Alviar & Andrés García-Suaza & Laura Ramírez-Gómez & Simón Villegas-Velásquez, 2021. "Measuring the Contribution of the Bioeconomy: The Case of Colombia and Antioquia," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    9. Arkadiusz Piwowar, 2020. "Agricultural Biogas—An Important Element in the Circular and Low-Carbon Development in Poland," Energies, MDPI, vol. 13(7), pages 1-12, April.
    10. Yang, Lan & Wang, Xue-Chao & Dai, Min & Chen, Bin & Qiao, Yuanbo & Deng, Huijing & Zhang, Dingfan & Zhang, Yizhe & Villas Bôas de Almeida, Cecília Maria & Chiu, Anthony S.F. & Klemeš, Jiří Jaromír & W, 2021. "Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects," Energy, Elsevier, vol. 228(C).
    11. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    12. Wiebke Jander & Sven Wydra & Johann Wackerbauer & Philipp Grundmann & Stephan Piotrowski, 2020. "Monitoring Bioeconomy Transitions with Economic–Environmental and Innovation Indicators: Addressing Data Gaps in the Short Term," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    13. Oniszk-Popławska, Anna & Matyka, Mariusz & Ryńska, Elżbieta Dagny, 2014. "Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 329-349.
    14. George B. Frisvold & Steven M. Moss & Andrea Hodgson & Mary E. Maxon, 2021. "Understanding the U.S. Bioeconomy: A New Definition and Landscape," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    15. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    16. Achinas, Spyridon & Willem Euverink, Gerrit Jan, 2020. "Rambling facets of manure-based biogas production in Europe: A briefing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Stelios Rozakis & Andrea Bartoli & Jacek Dach & Anna Jędrejek & Alina Kowalczyk-Juśko & Łukasz Mamica & Patrycja Pochwatka & Rafał Pudelko & Kesheng Shu, 2021. "Policy Impact on Regional Biogas Using a Modular Modeling Tool," Energies, MDPI, vol. 14(13), pages 1-21, June.
    18. Piwowar, Arkadiusz & Dzikuć, Maciej & Adamczyk, Janusz, 2016. "Agricultural biogas plants in Poland – selected technological, market and environmental aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 69-74.
    19. Hamelin, Lorie & Møller, Henrik Bjarne & Jørgensen, Uffe, 2021. "Harnessing the full potential of biomethane towards tomorrow's bioeconomy: A national case study coupling sustainable agricultural intensification, emerging biogas technologies and energy system analy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6266-:d:452381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.