IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5743-d439008.html
   My bibliography  Save this article

Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law

Author

Listed:
  • Bernadette Fina

    (AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria)

  • Hans Auer

    (Energy Economics Group (EEG), Technische Universität Wien, Gusshausstraße 25-29, E370-3, 1040 Vienna, Austria)

Abstract

This study is concerned with the national transposition of the European Renewable Energy Directive into Austrian law. The objective is to estimate the economic viability for residential customers when participating in a renewable energy community (REC), focused on PV electricity sharing. The developed simulation model considers the omission of certain electricity levies as well as the obligatory proximity constraint being linked to grid levels, thus introducing a stepwise reduction of per-unit grid charges as an incentive to keep the inner-community electricity transfer as local as possible. Results show that cost savings in residential RECs cover a broad range from 9 EUR/yr to 172 EUR/yr. The lowest savings are gained by customers without in-house PV systems, while owners of a private PV system make the most profits due to the possibility of selling as well as buying electricity within the borders of the REC. Generally, cost savings increase when the source is closer to the sink, as well as when more renewable electricity is available for inner-community electricity transfer. The presence of a commercial customer impacts savings for households insignificantly, but increases local self-consumption approximately by 10%. Despite the margin for residential participants to break even being narrow, energy community operators will have to raise a certain participation fee. Such participation fee would need to be as low as 2.5 EUR/month for customers without in-house PV systems in a purely residential REC, while other customers could still achieve a break-even when paying 5 EUR/month to 6.7 EUR/month in addition. Those results should alert policy makers to find additional support mechanisms to enhance customers’ motivations to participate if RECs are meant as a concept that should be adopted on a large scale.

Suggested Citation

  • Bernadette Fina & Hans Auer, 2020. "Economic Viability of Renewable Energy Communities under the Framework of the Renewable Energy Directive Transposed to Austrian Law," Energies, MDPI, vol. 13(21), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5743-:d:439008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stamatios Ntanos & Grigorios Kyriakopoulos & Miltiadis Chalikias & Garyfallos Arabatzis & Michalis Skordoulis, 2018. "Public Perceptions and Willingness to Pay for Renewable Energy: A Case Study from Greece," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    2. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The post COVID-19 green recovery in practice: Assessing the profitability of a policy proposal on residential photovoltaic plants," Energy Policy, Elsevier, vol. 147(C).
    3. Moosavian, S.M. & Rahim, N.A. & Selvaraj, J. & Solangi, K.H., 2013. "Energy policy to promote photovoltaic generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 44-58.
    4. Sarasa-Maestro, Carlos J. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Photovoltaic remuneration policies in the European Union," Energy Policy, Elsevier, vol. 55(C), pages 317-328.
    5. Inês, Campos & Guilherme, Pontes Luz & Esther, Marín-González & Swantje, Gährs & Stephen, Hall & Lars, Holstenkamp, 2020. "Regulatory challenges and opportunities for collective renewable energy prosumers in the EU," Energy Policy, Elsevier, vol. 138(C).
    6. Lee, Chul-Yong & Heo, Hyejin, 2016. "Estimating willingness to pay for renewable energy in South Korea using the contingent valuation method," Energy Policy, Elsevier, vol. 94(C), pages 150-156.
    7. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    8. Shukla, Akash Kumar & Sudhakar, K. & Baredar, Prashant & Mamat, Rizalman, 2018. "Solar PV and BIPV system: Barrier, challenges and policy recommendation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3314-3322.
    9. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    10. Lang, Tillmann & Ammann, David & Girod, Bastien, 2016. "Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings," Renewable Energy, Elsevier, vol. 87(P1), pages 77-87.
    11. Paravantis, John A. & Stigka, Eleni & Mihalakakou, Giouli & Michalena, Evanthie & Hills, Jeremy M. & Dourmas, Vasilis, 2018. "Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece," Renewable Energy, Elsevier, vol. 123(C), pages 639-651.
    12. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    13. Yazdanie, Mashael & Densing, Martin & Wokaun, Alexander, 2018. "The nationwide characterization and modeling of local energy systems: Quantifying the role of decentralized generation and energy resources in future communities," Energy Policy, Elsevier, vol. 118(C), pages 516-533.
    14. Roberts, Mike B. & Bruce, Anna & MacGill, Iain, 2019. "Impact of shared battery energy storage systems on photovoltaic self-consumption and electricity bills in apartment buildings," Applied Energy, Elsevier, vol. 245(C), pages 78-95.
    15. Emilio Ghiani & Andrea Giordano & Andrea Nieddu & Luca Rosetti & Fabrizio Pilo, 2019. "Planning of a Smart Local Energy Community: The Case of Berchidda Municipality (Italy)," Energies, MDPI, vol. 12(24), pages 1-14, December.
    16. Huijben, J.C.C.M. & Verbong, G.P.J., 2013. "Breakthrough without subsidies? PV business model experiments in the Netherlands," Energy Policy, Elsevier, vol. 56(C), pages 362-370.
    17. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Coupling optimization of urban spatial structure and neighborhood-scale distributed energy systems," Energy, Elsevier, vol. 144(C), pages 472-481.
    18. Florian Hanke & Jens Lowitzsch, 2020. "Empowering Vulnerable Consumers to Join Renewable Energy Communities—Towards an Inclusive Design of the Clean Energy Package," Energies, MDPI, vol. 13(7), pages 1-27, April.
    19. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2019. "Profitability of PV sharing in energy communities: Use cases for different settlement patterns," Energy, Elsevier, vol. 189(C).
    20. Zografakis, Nikolaos & Sifaki, Elli & Pagalou, Maria & Nikitaki, Georgia & Psarakis, Vasilios & Tsagarakis, Konstantinos P., 2010. "Assessment of public acceptance and willingness to pay for renewable energy sources in Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1088-1095, April.
    21. Lowitzsch, J. & Hoicka, C.E. & van Tulder, F.J., 2020. "Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    22. Ma, Chunbo & Rogers, Abbie A. & Kragt, Marit E. & Zhang, Fan & Polyakov, Maksym & Gibson, Fiona & Chalak, Morteza & Pandit, Ram & Tapsuwan, Sorada, 2015. "Consumers’ willingness to pay for renewable energy: A meta-regression analysis," Resource and Energy Economics, Elsevier, vol. 42(C), pages 93-109.
    23. Mah, Daphne Ngar-yin & Wang, Guihua & Lo, Kevin & Leung, Michael K.H. & Hills, Peter & Lo, Alex Y., 2018. "Barriers and policy enablers for solar photovoltaics (PV) in cities: Perspectives of potential adopters in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 921-936.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Proto, 2022. "Renewable Energy Communities as an Enabling Framework to Boost Flexibility and Promote the Energy Transition," Energies, MDPI, vol. 15(23), pages 1-4, November.
    2. Lubov Petrichenko & Antans Sauhats & Illia Diahovchenko & Irina Segeda, 2022. "Economic Viability of Energy Communities versus Distributed Prosumers," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    3. Bernadette Fina & Miriam Schwebler & Carolin Monsberger, 2022. "Different Technologies’ Impacts on the Economic Viability, Energy Flows and Emissions of Energy Communities," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    4. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Luigi Martirano & Rodolfo Araneo, 2022. "Challenges in Energy Communities: State of the Art and Future Perspectives," Energies, MDPI, vol. 15(19), pages 1-5, October.
    5. Man Zhou & Uliana Pysmenna & Oleksandra Kubatko & Volodymyr Voloshchuk & Iryna Sotnyk & Galyna Trypolska, 2023. "Support for Household Prosumers in the Early Stages of Power Market Decentralization in Ukraine," Energies, MDPI, vol. 16(17), pages 1-15, September.
    6. Fina, Bernadette & Roberts, Mike B. & Auer, Hans & Bruce, Anna & MacGill, Iain, 2021. "Exogenous influences on deployment and profitability of photovoltaics for self-consumption in multi-apartment buildings in Australia and Austria," Applied Energy, Elsevier, vol. 283(C).
    7. Sebastian Zwickl-Bernhard & Hans Auer, 2021. "Citizen Participation in Low-Carbon Energy Systems: Energy Communities and Its Impact on the Electricity Demand on Neighborhood and National Level," Energies, MDPI, vol. 14(2), pages 1-22, January.
    8. Martin Hammerschmid & Johannes Konrad & Andreas Werner & Tom Popov & Stefan Müller, 2022. "ENECO 2 Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities," Energies, MDPI, vol. 15(19), pages 1-32, September.
    9. Michael Krug & Maria Rosaria Di Nucci & Matteo Caldera & Elena De Luca, 2022. "Mainstreaming Community Energy: Is the Renewable Energy Directive a Driver for Renewable Energy Communities in Germany and Italy?," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    10. Bernadette Fina & Hubert Fechner, 2021. "Transposition of European Guidelines for Energy Communities into Austrian Law: A Comparison and Discussion of Issues and Positive Aspects," Energies, MDPI, vol. 14(13), pages 1-14, June.
    11. Shoaib Ahmed & Amjad Ali & Antonio D’Angola, 2024. "A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations," Sustainability, MDPI, vol. 16(5), pages 1-34, February.
    12. Valentina Costa & Federico Campanini, 2024. "Community-Centred Energy Planning: Within and beyond Administrative Borders," Sustainability, MDPI, vol. 16(5), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fina, Bernadette & Roberts, Mike B. & Auer, Hans & Bruce, Anna & MacGill, Iain, 2021. "Exogenous influences on deployment and profitability of photovoltaics for self-consumption in multi-apartment buildings in Australia and Austria," Applied Energy, Elsevier, vol. 283(C).
    2. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    3. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    4. Roberts, Mike B. & Sharma, Arijit & MacGill, Iain, 2022. "Efficient, effective and fair allocation of costs and benefits in residential energy communities deploying shared photovoltaics," Applied Energy, Elsevier, vol. 305(C).
    5. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "Solar collective self-consumption: Economic analysis of a policy mix," Ecological Economics, Elsevier, vol. 199(C).
    6. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    7. Ana Ogando-Martínez & Xela García-Santiago & Saúl Díaz García & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2023. "Optimization of Energy Allocation Strategies in Spanish Collective Self-Consumption Photovoltaic Systems," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    8. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    9. Jenny Palm, 2021. "The Transposition of Energy Communities into Swedish Regulations: Overview and Critique of Emerging Regulations," Energies, MDPI, vol. 14(16), pages 1-15, August.
    10. Dastan Bamwesigye, 2023. "Willingness to Pay for Alternative Energies in Uganda: Energy Needs and Policy Instruments towards Zero Deforestation 2030 and Climate Change," Energies, MDPI, vol. 16(2), pages 1-21, January.
    11. Kim, Kyung Jae & Lee, Hwarang & Koo, Yoonmo, 2020. "Research on local acceptance cost of renewable energy in South Korea: A case study of photovoltaic and wind power projects," Energy Policy, Elsevier, vol. 144(C).
    12. Anna Kowalska-Pyzalska, 2019. "Do Consumers Want to Pay for Green Electricity? A Case Study from Poland," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    13. Anna Kowalska-Pyzalska, 2018. "An Empirical Analysis of Green Electricity Adoption Among Residential Consumers in Poland," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    14. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    15. Bruno Domenech & Gema Calleja & Jordi Olivella, 2021. "Residential Photovoltaic Profitability with Storage under the New Spanish Regulation: A Multi-Scenario Analysis," Energies, MDPI, vol. 14(7), pages 1-17, April.
    16. Anna Kowalska-Pyzalska, 2018. "An empirical analysis of green energy adoption among residential consumers in Poland," HSC Research Reports HSC/18/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    17. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    18. Yu, Ying & Yamaguchi, Kensuke & Thuy, Truong Dang & Kittner, Noah, 2022. "Will the public in emerging economies support renewable energy? Evidence from Ho Chi Minh City, Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    19. Evangelia Karasmanaki & Spyridon Galatsidas & Georgios Tsantopoulos, 2019. "An Investigation of Factors Affecting the Willingness to Invest in Renewables among Environmental Students: A Logistic Regression Approach," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    20. Ibrahim Mosly & Anas A. Makki, 2018. "Current Status and Willingness to Adopt Renewable Energy Technologies in Saudi Arabia," Sustainability, MDPI, vol. 10(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5743-:d:439008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.