IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3996-d393768.html
   My bibliography  Save this article

Long-Term Electricity Demand Prediction via Socioeconomic Factors—A Machine Learning Approach with Florida as a Case Study

Author

Listed:
  • Marwen Elkamel

    (Industrial Engineering & Management Systems Department, University of Central Florida, Orlando, FL 32816, USA)

  • Lily Schleider

    (Industrial Engineering & Management Systems Department, University of Central Florida, Orlando, FL 32816, USA)

  • Eduardo L. Pasiliao

    (Air Force Research Laboratory Munitions Directorate, Eglin Air Force Base, FL 32542, USA)

  • Ali Diabat

    (Division of Engineering, New York University, Abu Dhabi 129188, UAE)

  • Qipeng P. Zheng

    (Industrial Engineering & Management Systems Department, University of Central Florida, Orlando, FL 32816, USA)

Abstract

Predicting future energy demand will allow for better planning and operation of electricity providers. Suppliers will have an idea of what they need to prepare for, thereby preventing over and under-production. This can save money and make the energy industry more efficient. We applied a multiple regression model and three Convolutional Neural Networks (CNNs) in order to predict Florida’s future electricity use. The multiple regression model was a time series model that included all the variables and employed a regression equation. The univariant CNN only accounts for the energy consumption variable. The multichannel network takes into account all the time series variables. The multihead network created a CNN model for each of the variables and then combined them through concatenation. For all of the models, the dataset was split up into training and testing data so the predictions could be compared to the actual values in order to avoid overfitting and to provide an unbiased estimate of model accuracy. Historical data from January 2010 to December 2017 were used. The results for the multiple regression model concluded that the variables month, Cooling Degree Days, Heating Degree Days and GDP were significant in predicting future electricity demand. Other multiple regression models were formulated that utilized other variables that were correlated to the variables in the best-selected model. These variables included: number of visitors to the state, population, number of consumers and number of households. For the CNNs, the univariant predictions had more diverse and higher Root Mean Squared Error (RMSE) values compared to the multichannel and multihead network. The multichannel network performed the best out of the three CNNs. In summary, the multichannel model was found to be the best at predicting future electricity demand out of all the models considered, including the regression model based on the datasets employed.

Suggested Citation

  • Marwen Elkamel & Lily Schleider & Eduardo L. Pasiliao & Ali Diabat & Qipeng P. Zheng, 2020. "Long-Term Electricity Demand Prediction via Socioeconomic Factors—A Machine Learning Approach with Florida as a Case Study," Energies, MDPI, vol. 13(15), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3996-:d:393768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angelopoulos, Dimitrios & Siskos, Yannis & Psarras, John, 2019. "Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece," European Journal of Operational Research, Elsevier, vol. 275(1), pages 252-265.
    2. Ahmed, T. & Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2018. "Load forecasting under changing climatic conditions for the city of Sydney, Australia," Energy, Elsevier, vol. 142(C), pages 911-919.
    3. Mohammed, Nooriya A., 2018. "Modelling of unsuppressed electrical demand forecasting in Iraq for long term," Energy, Elsevier, vol. 162(C), pages 354-363.
    4. Chen, Qiwei & Costantini, Mauro & Deschamps, Bruno, 2016. "How accurate are professional forecasts in Asia? Evidence from ten countries," International Journal of Forecasting, Elsevier, vol. 32(1), pages 154-167.
    5. Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
    6. He, Yaoyao & Qin, Yang & Wang, Shuo & Wang, Xu & Wang, Chao, 2019. "Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network," Applied Energy, Elsevier, vol. 233, pages 565-575.
    7. Wang, Siyan & Sun, Xun & Lall, Upmanu, 2017. "A hierarchical Bayesian regression model for predicting summer residential electricity demand across the U.S.A," Energy, Elsevier, vol. 140(P1), pages 601-611.
    8. Komi Nagbe & Jairo Cugliari & Julien Jacques, 2018. "Short-Term Electricity Demand Forecasting Using a Functional State Space Model," Energies, MDPI, vol. 11(5), pages 1-24, May.
    9. Atalla, Tarek N. & Hunt, Lester C., 2016. "Modelling residential electricity demand in the GCC countries," Energy Economics, Elsevier, vol. 59(C), pages 149-158.
    10. Robert A. Buckle & David Haugh & Peter Thomson, 2004. "Markov Switching Models for GDP Growth in a Small Open Economy: The New Zealand Experience," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(2), pages 227-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Yang & Maoyu Ran & Chaoqun Zhuang, 2022. "Prediction of Building Electricity Consumption Based on Joinpoint−Multiple Linear Regression," Energies, MDPI, vol. 15(22), pages 1-19, November.
    2. Omar Jouma El-Hafez & Tarek Y. ElMekkawy & Mohamed Kharbeche & Ahmed Massoud, 2022. "Impact of COVID-19 Pandemic on Qatar Electricity Demand and Load Forecasting: Preparedness of Distribution Networks for Emerging Situations," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    3. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    4. Yaqing Sheng & Jinpeng Liu & Delin Wei & Xiaohua Song, 2021. "Heterogeneous Study of Multiple Disturbance Factors Outside Residential Electricity Consumption: A Case Study of Beijing," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    5. Rubens A. Fernandes & Raimundo C. S. Gomes & Carlos T. Costa & Celso Carvalho & Neilson L. Vilaça & Lennon B. F. Nascimento & Fabricio R. Seppe & Israel G. Torné & Heitor L. N. da Silva, 2023. "A Demand Forecasting Strategy Based on a Retrofit Architecture for Remote Monitoring of Legacy Building Circuits," Sustainability, MDPI, vol. 15(14), pages 1-37, July.
    6. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    7. Bibi Ibrahim & Luis Rabelo, 2021. "A Deep Learning Approach for Peak Load Forecasting: A Case Study on Panama," Energies, MDPI, vol. 14(11), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    2. Carolina Deina & João Lucas Ferreira dos Santos & Lucas Henrique Biuk & Mauro Lizot & Attilio Converti & Hugo Valadares Siqueira & Flavio Trojan, 2023. "Forecasting Electricity Demand by Neural Networks and Definition of Inputs by Multi-Criteria Analysis," Energies, MDPI, vol. 16(4), pages 1-24, February.
    3. Ismail Shah & Hasnain Iftikhar & Sajid Ali, 2020. "Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique," Forecasting, MDPI, vol. 2(2), pages 1-17, May.
    4. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    5. Martha Misas & María Teresa Ramírez, 2005. "Depressions In The Colombian Economic Growth During The Xx Century:A Markov Switching Regime Model," Borradores de Economia 2274, Banco de la Republica.
    6. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    7. Yuhan Zhang & Youqi Wang & Yiru Bai & Ruiyuan Zhang & Xu Liu & Xian Ma, 2023. "Prediction of Spatial Distribution of Soil Organic Carbon in Helan Farmland Based on Different Prediction Models," Land, MDPI, vol. 12(11), pages 1-15, October.
    8. Grigoroudis, Evangelos & Noel, Laurent & Galariotis, Emilios & Zopounidis, Constantin, 2021. "An ordinal regression approach for analyzing consumer preferences in the art market," European Journal of Operational Research, Elsevier, vol. 290(2), pages 718-733.
    9. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    10. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    11. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    12. Lu, Linna & Lei, Yalin & Yang, Yang & Zheng, Haoqi & Wang, Wen & Meng, Yan & Meng, Chunhong & Zha, Liqiang, 2023. "Assessing nickel sector index volatility based on quantile regression for Garch and Egarch models: Evidence from the Chinese stock market 2018–2022," Resources Policy, Elsevier, vol. 82(C).
    13. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    14. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    15. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
    16. Xingcai Zhou & Jiangyan Wang, 2021. "Panel semiparametric quantile regression neural network for electricity consumption forecasting," Papers 2103.00711, arXiv.org.
    17. Syed Muhammad Raza Abidi & Mushtaq Hussain & Yonglin Xu & Wu Zhang, 2018. "Prediction of Confusion Attempting Algebra Homework in an Intelligent Tutoring System through Machine Learning Techniques for Educational Sustainable Development," Sustainability, MDPI, vol. 11(1), pages 1-21, December.
    18. Karan Bhuwalka & Eunseo Choi & Elizabeth A. Moore & Richard Roth & Randolph E. Kirchain & Elsa A. Olivetti, 2023. "A hierarchical Bayesian regression model that reduces uncertainty in material demand predictions," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 43-55, February.
    19. Hanif, Sarmad & Mukherjee, Monish & Poudel, Shiva & Yu, Min Gyung & Jinsiwale, Rohit A. & Hardy, Trevor D. & Reeve, Hayden M., 2023. "Analyzing at-scale distribution grid response to extreme temperatures," Applied Energy, Elsevier, vol. 337(C).
    20. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3996-:d:393768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.