IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3968-d393419.html
   My bibliography  Save this article

Operational Performance of Electric Power Firms: Comparison between Japan and South Korea by Non-Radial Measures

Author

Listed:
  • Toshiyuki Sueyoshi

    (Department of Management, New Mexico Institute of Mining & Technology, 801 Leroy Place, Socorro, NM 87801, USA
    School of Environment and Society, Tokyo Tech World Research Hub Initiative, Tokyo Institute of Technology, 3-3-6 Shibaura, Minato-ku, Tokyo 108-0023, Japan)

  • Youngbok Ryu

    (College of Professional Studies, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA)

  • Mika Goto

    (School of Environment and Society, Tokyo Tech World Research Hub Initiative, Tokyo Institute of Technology, 3-3-6 Shibaura, Minato-ku, Tokyo 108-0023, Japan)

Abstract

This study compares the electric power sectors between Japan and South (S) Korea. Both nations have been under a global trend of deregulation. To assess their progress due to industrial change and technology development, we use Data Envelopment Analysis (DEA) as an assessment tool that enables us to evaluate the level of simultaneous achievements on economic and technological measures, so assessing the degree of holistic development. DEA has been widely applied for performance assessment in the past decades. In this study, the method compares electric power firms by their operational efficiencies. To compare their achievements, it is necessary to develop a new type of DEA application for performance measurement. The proposed approach adds two analytical capabilities. First, the approach needs to handle “zero” in a data set and then restrict multipliers (i.e., weights among inputs and outputs) without any prior information to increase our empirical reliability. No study has simultaneously explored the two capabilities in DEA. Using the proposed method, our empirical study identifies two findings. One of the two is that the electric power industry of S. Korea outperformed that of the Japanese industry in the observed periods (2014–2018) because the Japanese power sector still suffered from an occurrence of the Fukushima Daiichi nuclear plant disaster which occurred on 1 March 2011. However, the difference has been gradually diminishing because the Japanese electricity industry has been gradually recovering from the huge disaster. The other is that the S. Korean power industry has been in a descending trend because the nation has shown technical regress as a result of inconsistent technology development (e.g., shifting its R&D: Research and Development) focus from electrical engineering to chemistry). The former R&D area is essential in maintaining the technical level of S. Korea′s electric power industry.

Suggested Citation

  • Toshiyuki Sueyoshi & Youngbok Ryu & Mika Goto, 2020. "Operational Performance of Electric Power Firms: Comparison between Japan and South Korea by Non-Radial Measures," Energies, MDPI, vol. 13(15), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3968-:d:393419
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3968/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3968/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goto, Mika & Inoue, Tomohiro & Sueyoshi, Toshiyuki, 2013. "Structural reform of Japanese electric power industry: Separation between generation and transmission & distribution," Energy Policy, Elsevier, vol. 56(C), pages 186-200.
    2. Mika Goto and Toshiyuki Sueyoshi, 2016. "Electricity market reform in Japan after Fukushima," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    3. Al-Sunaidy, A. & Green, R., 2006. "Electricity deregulation in OECD (Organization for Economic Cooperation and Development) countries," Energy, Elsevier, vol. 31(6), pages 769-787.
    4. Asano, Hiroshi, 2006. "Regulatory reform of the electricity industry in Japan: What is the next step of deregulation?," Energy Policy, Elsevier, vol. 34(16), pages 2491-2497, November.
    5. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    6. Kyohei Matsushita & Kota Asano, 2014. "Reducing CO 2 emissions of Japanese thermal power companies: a directional output distance function approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(1), pages 1-19, January.
    7. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
    8. Jiro Nemoto & Mika Goto, 2003. "Measurement of Dynamic Efficiency in Production: An Application of Data Envelopment Analysis to Japanese Electric Utilities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 191-210, April.
    9. Park, Soo-Uk & Lesourd, Jean-Baptiste, 2000. "The efficiency of conventional fuel power plants in South Korea: A comparison of parametric and non-parametric approaches," International Journal of Production Economics, Elsevier, vol. 63(1), pages 59-67, January.
    10. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    11. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Japanese fuel mix strategy after disaster of Fukushima Daiichi nuclear power plant: Lessons from international comparison among industrial nations measured by DEA environmental assessment in time hori," Energy Economics, Elsevier, vol. 52(PA), pages 87-103.
    12. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    13. Pietro Peretto & Sjak Smulders, 2002. "Technological Distance, Growth And Scale Effects," Economic Journal, Royal Economic Society, vol. 112(481), pages 603-624, July.
    14. Mika Goto & Kohei Fujita & Toshiyuki Sueyoshi, 2020. "Marginal Effect of R&D Investment and Impact of Market Reforms—An Empirical Analysis of Japanese Electric Power Companies," Energies, MDPI, vol. 13(13), pages 1-15, July.
    15. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    16. Boccard, Nicolas, 2014. "The cost of nuclear electricity: France after Fukushima," Energy Policy, Elsevier, vol. 66(C), pages 450-461.
    17. Hayashi, Masatsugu & Hughes, Larry, 2013. "The policy responses to the Fukushima nuclear accident and their effect on Japanese energy security," Energy Policy, Elsevier, vol. 59(C), pages 86-101.
    18. Aghdam, Reza Fathollahzadeh, 2011. "Dynamics of productivity change in the Australian electricity industry: Assessing the impacts of electricity reform," Energy Policy, Elsevier, vol. 39(6), pages 3281-3295, June.
    19. Toshiyuki Sueyoshi & Mika Goto, 2020. "Performance Assessment of Japanese Electric Power Industry: DEA Measurement with Future Impreciseness," Energies, MDPI, vol. 13(2), pages 1-24, January.
    20. Oh, Dong-hyun, 2015. "Productivity growth, technical change and economies of scale of Korean fossil-fuel generation companies, 2001–2012: A dual approach," Energy Economics, Elsevier, vol. 49(C), pages 113-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eunjung Lim, 2021. "A Comparative Study of Power Mixes for Green Growth: How South Korea and Japan See Nuclear Energy Differently," Energies, MDPI, vol. 14(18), pages 1-15, September.
    2. Toshiyuki Sueyoshi & Mika Goto, 2021. "Performance Assessment of Japanese Electricity and Gas Companies during 2002–2018: Three DEA Approaches," Energies, MDPI, vol. 14(6), pages 1-18, March.
    3. Aristovnik, Aleksander & Yang, Guo-liang & Song, Yao-yao & Ravšelj, Dejan, 2023. "Industrial performance of the top R&D enterprises in world-leading economies: A metafrontier approach," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Toshiyuki Sueyoshi & Mika Goto, 2020. "Performance Assessment of Japanese Electric Power Industry: DEA Measurement with Future Impreciseness," Energies, MDPI, vol. 13(2), pages 1-24, January.
    3. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    4. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
    5. Yoonhwan Oh & Dong-hyun Oh & Jeong-Dong Lee, 2017. "A sequential global Malmquist productivity index: Productivity growth index for unbalanced panel data considering the progressive nature of technology," Empirical Economics, Springer, vol. 52(4), pages 1651-1674, June.
    6. Gharneh, Naser Shams & Nabavieh, Alireza & Gholamiangonabadi, Davoud & Alimoradi, Mohammad, 2014. "Productivity change and its determinants: Application of the Malmquist index with bootstrapping in Iranian steam power plants," Utilities Policy, Elsevier, vol. 31(C), pages 114-120.
    7. Li, Aijun & Zhang, Aizhen & Huang, Huijie & Yao, Xin, 2018. "Measuring unified efficiency of fossil fuel power plants across provinces in China: An analysis based on non-radial directional distance functions," Energy, Elsevier, vol. 152(C), pages 549-561.
    8. Shin, Kong Joo & Managi, Shunsuke, 2017. "Liberalization of a retail electricity market: Consumer satisfaction and household switching behavior in Japan," Energy Policy, Elsevier, vol. 110(C), pages 675-685.
    9. Jie Liu & Chunhui Yuan & Xiaolong Li, 2019. "The Environmental Assessment on Chinese Logistics Enterprises Based on Non-Radial DEA," Energies, MDPI, vol. 12(24), pages 1-18, December.
    10. Xie, Bai-Chen & Gao, Jie & Zhang, Shuang & Zhang, ZhongXiang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," MITP: Mitigation, Innovation and Transformation Pathways 254042, Fondazione Eni Enrico Mattei (FEEM).
    11. Sueyoshi, Toshiyuki & Yuan, Yan & Li, Aijun & Wang, Daoping, 2017. "Methodological comparison among radial, non-radial and intermediate approaches for DEA environmental assessment," Energy Economics, Elsevier, vol. 67(C), pages 439-453.
    12. Toshiyuki Sueyoshi & Mika Goto, 2021. "Performance Assessment of Japanese Electricity and Gas Companies during 2002–2018: Three DEA Approaches," Energies, MDPI, vol. 14(6), pages 1-18, March.
    13. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    14. Youngbok Ryu & Toshiyuki Sueyoshi, 2021. "Examining the Relationship between the Economic Performance of Technology-Based Small Suppliers and Socially Sustainable Procurement," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    15. Liu, C.H. & Lin, Sue J. & Lewis, Charles, 2010. "Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis," Energy Policy, Elsevier, vol. 38(2), pages 1049-1058, February.
    16. Mika Goto & Kohei Fujita & Toshiyuki Sueyoshi, 2020. "Marginal Effect of R&D Investment and Impact of Market Reforms—An Empirical Analysis of Japanese Electric Power Companies," Energies, MDPI, vol. 13(13), pages 1-15, July.
    17. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    18. Sueyoshi, Toshiyuki & Wang, Derek, 2018. "DEA environmental assessment on US petroleum industry: Non-radial approach with translation invariance in time horizon," Energy Economics, Elsevier, vol. 72(C), pages 276-289.
    19. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    20. Fallahi, Alireza & Ebrahimi, Reza & Ghaderi, S.F., 2011. "Measuring efficiency and productivity change in power electric generation management companies by using data envelopment analysis: A case study," Energy, Elsevier, vol. 36(11), pages 6398-6405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3968-:d:393419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.