IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2813-d366117.html
   My bibliography  Save this article

Multidispatch for Microgrid including Renewable Energy and Electric Vehicles with Robust Optimization Algorithm

Author

Listed:
  • Ruifeng Shi

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    China Institute of Energy and Transportation Integrated Development, Beijing 102206, China)

  • Penghui Zhang

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Jie Zhang

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Li Niu

    (School of Information Resource Management, Renmin University of China, Beijing 100872, China)

  • Xiaoting Han

    (School of Economics and Management, Beihang University, Beijing 100083, China)

Abstract

With the deterioration of the environment and the depletion of fossil fuel energy, renewable energy has attracted worldwide attention because of its continuous availability from nature. Despite this continuous availability, the uncertainty of intermittent power is a problem for grid dispatching. This paper reports on a study of the scheduling and optimization of microgrid systems for photovoltaic (PV) power and electric vehicles (EVs). We propose a mathematical model to address the uncertainty of PV output and EV charging behavior, and model scheduling optimization that minimizes the economic and environmental cost of a microgrid system. A semi-infinite dual optimization model is then used to deal with the uncertain variables, which can be solved with a robust optimization algorithm. A numerical case study shows that the security and stability of the solution obtained by robust optimization outperformed that of stochastic optimization.

Suggested Citation

  • Ruifeng Shi & Penghui Zhang & Jie Zhang & Li Niu & Xiaoting Han, 2020. "Multidispatch for Microgrid including Renewable Energy and Electric Vehicles with Robust Optimization Algorithm," Energies, MDPI, vol. 13(11), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2813-:d:366117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yongli & Wang, Yudong & Huang, Yujing & Li, Fang & Zeng, Ming & Li, Jiapu & Wang, Xiaohai & Zhang, Fuwei, 2019. "Planning and operation method of the regional integrated energy system considering economy and environment," Energy, Elsevier, vol. 171(C), pages 731-750.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Gazijahani, Farhad Samadi & Salehi, Javad, 2018. "Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating critical energy peak pricing demand response program using robust optimization approach," Energy, Elsevier, vol. 161(C), pages 999-1015.
    4. Jiawen Bai & Tao Ding & Zhe Wang & Jianhua Chen, 2019. "Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants," Energies, MDPI, vol. 12(20), pages 1-17, October.
    5. Rodríguez-Gallegos, Carlos D. & Yang, Dazhi & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study," Energy, Elsevier, vol. 160(C), pages 410-429.
    6. Lei Fu & Yiling Yang & Xiaolong Yao & Xufen Jiao & Tiantian Zhu, 2019. "A Regional Photovoltaic Output Prediction Method Based on Hierarchical Clustering and the mRMR Criterion," Energies, MDPI, vol. 12(20), pages 1-23, October.
    7. Zhou, Ella & Cole, Wesley & Frew, Bethany, 2018. "Valuing variable renewable energy for peak demand requirements," Energy, Elsevier, vol. 165(PA), pages 499-511.
    8. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    9. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    10. Heo, Eunnyeong & Kim, Jinsoo & Boo, Kyung-Jin, 2010. "Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2214-2220, October.
    11. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    12. Yu, Jiah & Ryu, Jun-Hyung & Lee, In-beum, 2019. "A stochastic optimization approach to the design and operation planning of a hybrid renewable energy system," Applied Energy, Elsevier, vol. 247(C), pages 212-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    2. Xiang Liao & Beibei Qian & Zhiqiang Jiang & Bo Fu & Hui He, 2023. "Integrated Energy Station Optimal Dispatching Using a Novel Many-Objective Optimization Algorithm Based on Multiple Update Strategies," Energies, MDPI, vol. 16(13), pages 1-26, July.
    3. Héricles Eduardo Oliveira Farias & Camilo Alberto Sepulveda Rangel & Leonardo Weber Stringini & Luciane Neves Canha & Daniel Pegoraro Bertineti & Wagner da Silva Brignol & Zeno Iensen Nadal, 2021. "Combined Framework with Heuristic Programming and Rule-Based Strategies for Scheduling and Real Time Operation in Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(5), pages 1-27, March.
    4. Rokas Tamašauskas & Jolanta Šadauskienė & Dorota Anna Krawczyk & Violeta Medelienė, 2020. "Analysis of Primary Energy Factors from Photovoltaic Systems for a Nearly Zero Energy Building (NZEB): A Case Study in Lithuania," Energies, MDPI, vol. 13(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    2. Ratanakuakangwan, Sudlop & Morita, Hiroshi, 2021. "Hybrid stochastic robust optimization and robust optimization for energy planning – A social impact-constrained case study," Applied Energy, Elsevier, vol. 298(C).
    3. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    4. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    5. Zhu, Junjie & Huang, Shengjun & Liu, Yajie & Lei, Hongtao & Sang, Bo, 2021. "Optimal energy management for grid-connected microgrids via expected-scenario-oriented robust optimization," Energy, Elsevier, vol. 216(C).
    6. Xian Huang & Wentong Ji & Xiaorong Ye & Zhangjie Feng, 2023. "Configuration Planning of Expressway Self-Consistent Energy System Based on Multi-Objective Chance-Constrained Programming," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    7. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
    8. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    9. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    10. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    11. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    12. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    13. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    14. Rodríguez-Gallegos, Carlos D. & Vinayagam, Lokesh & Gandhi, Oktoviano & Yagli, Gokhan Mert & Alvarez-Alvarado, Manuel S. & Srinivasan, Dipti & Reindl, Thomas & Panda, S.K., 2021. "Novel forecast-based dispatch strategy optimization for PV hybrid systems in real time," Energy, Elsevier, vol. 222(C).
    15. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    16. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    17. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    18. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    19. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    20. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2813-:d:366117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.