IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i11p6490-6507.html
   My bibliography  Save this article

Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source

Author

Listed:
  • Moghaddam, Amjad Anvari
  • Seifi, Alireza
  • Niknam, Taher
  • Alizadeh Pahlavani, Mohammad Reza

Abstract

As a result of today’s rapid socioeconomic growth and environmental concerns, higher service reliability, better power quality, increased energy efficiency and energy independency, exploring alternative energy resources, especially the renewable ones, has become the fields of interest for many modern societies. In this regard, MG (Micro-Grid) which is comprised of various alternative energy sources can serve as a basic tool to reach the desired objectives while distributing electricity more effectively, economically and securely. In this paper an expert multi-objective AMPSO (Adaptive Modified Particle Swarm Optimization algorithm) is presented for optimal operation of a typical MG with RESs (renewable energy sources) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the surplus of energy when it’s needed. The problem is formulated as a nonlinear constraint multi-objective optimization problem to minimize the total operating cost and the net emission simultaneously. To improve the optimization process, a hybrid PSO algorithm based on a CLS (Chaotic Local Search) mechanism and a FSA (Fuzzy Self Adaptive) structure is utilized. The proposed algorithm is tested on a typical MG and its superior performance is compared to those from other evolutionary algorithms such as GA (Genetic Algorithm) and PSO (Particle Swarm Optimization).

Suggested Citation

  • Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6490-6507
    DOI: 10.1016/j.energy.2011.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Meymand, Hamed Zeinoddini & Mojarrad, Hasan Doagou, 2011. "An efficient algorithm for multi-objective optimal operation management of distribution network considering fuel cell power plants," Energy, Elsevier, vol. 36(1), pages 119-132.
    2. Ayres, Robert U. & Turton, Hal & Casten, Tom, 2007. "Energy efficiency, sustainability and economic growth," Energy, Elsevier, vol. 32(5), pages 634-648.
    3. Liao, Gwo-Ching, 2011. "A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power," Energy, Elsevier, vol. 36(2), pages 1018-1029.
    4. Sayyaadi, Hoseyn & Babaie, Meisam & Farmani, Mohammad Reza, 2011. "Implementing of the multi-objective particle swarm optimizer and fuzzy decision-maker in exergetic, exergoeconomic and environmental optimization of a benchmark cogeneration system," Energy, Elsevier, vol. 36(8), pages 4777-4789.
    5. Sanseverino, Eleonora Riva & Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & De Paola, Alessandra & Lo Re, Giuseppe, 2011. "An execution, monitoring and replanning approach for optimal energy management in microgrids," Energy, Elsevier, vol. 36(5), pages 3429-3436.
    6. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Tang, Fang & Huang, De-Xian, 2005. "Improved particle swarm optimization combined with chaos," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1261-1271.
    7. Pouresmaeil, Edris & Montesinos-Miracle, Daniel & Gomis-Bellmunt, Oriol & Bergas-Jané, Joan, 2010. "A multi-objective control strategy for grid connection of DG (distributed generation) resources," Energy, Elsevier, vol. 35(12), pages 5022-5030.
    8. Pearce, J.M., 2009. "Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems," Energy, Elsevier, vol. 34(11), pages 1947-1954.
    9. Houwing, Michiel & Ajah, Austin N. & Heijnen, Petra W. & Bouwmans, Ivo & Herder, Paulien M., 2008. "Uncertainties in the design and operation of distributed energy resources: The case of micro-CHP systems," Energy, Elsevier, vol. 33(10), pages 1518-1536.
    10. Dali, Mehdi & Belhadj, Jamel & Roboam, Xavier, 2010. "Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: Control and energy management – Experimental investigation," Energy, Elsevier, vol. 35(6), pages 2587-2595.
    11. Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    2. Pouresmaeil, Edris & Gomis-Bellmunt, Oriol & Montesinos-Miracle, Daniel & Bergas-Jané, Joan, 2011. "Multilevel converters control for renewable energy integration to the power grid," Energy, Elsevier, vol. 36(2), pages 950-963.
    3. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    4. Obara, Shin’ya & Watanabe, Seizi & Rengarajan, Balaji, 2011. "Operation method study based on the energy balance of an independent microgrid using solar-powered water electrolyzer and an electric heat pump," Energy, Elsevier, vol. 36(8), pages 5200-5213.
    5. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    6. Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
    7. Alahäivälä, Antti & Heß, Tobias & Cao, Sunliang & Lehtonen, Matti, 2015. "Analyzing the optimal coordination of a residential micro-CHP system with a power sink," Applied Energy, Elsevier, vol. 149(C), pages 326-337.
    8. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    9. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Bina, Mohammad Amin & Zare, Mohsen, 2015. "Coordination of combined heat and power-thermal-wind-photovoltaic units in economic load dispatch using chance-constrained and jointly distributed random variables methods," Energy, Elsevier, vol. 79(C), pages 50-67.
    10. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    11. Teymoori Hamzehkolaei, Fatemeh & Amjady, Nima, 2018. "A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units," Renewable Energy, Elsevier, vol. 118(C), pages 602-614.
    12. Galeotti, Matteo & Cinà, Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    13. Young-Sik Jang & Mun-Kyeom Kim, 2017. "A Dynamic Economic Dispatch Model for Uncertain Power Demands in an Interconnected Microgrid," Energies, MDPI, vol. 10(3), pages 1-16, March.
    14. Ummenhofer, C.D. & Heyer, G. & Roediger, T. & Olsen, J. & Page, J., 2017. "Improved system control logic for an MCHP system incorporating electric storage," Applied Energy, Elsevier, vol. 203(C), pages 737-751.
    15. Niknam, Taher & Golestaneh, Faranak & Malekpour, Ahmadreza, 2012. "Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational," Energy, Elsevier, vol. 43(1), pages 427-437.
    16. Bird, Trevor J. & Jain, Neera, 2020. "Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage," Applied Energy, Elsevier, vol. 271(C).
    17. TeymouriHamzehkolaei, Fatemeh & Sattari, Sourena, 2011. "Technical and economic feasibility study of using Micro CHP in the different climate zones of Iran," Energy, Elsevier, vol. 36(8), pages 4790-4798.
    18. Ioakimidis, Christos S. & Oliveira, Luís J. & Genikomsakis, Konstantinos N. & Dallas, Panagiotis I., 2014. "Design, architecture and implementation of a residential energy box management tool in a SmartGrid," Energy, Elsevier, vol. 75(C), pages 167-181.
    19. Khorramdel, Benyamin & Raoofat, Mahdi, 2012. "Optimal stochastic reactive power scheduling in a microgrid considering voltage droop scheme of DGs and uncertainty of wind farms," Energy, Elsevier, vol. 45(1), pages 994-1006.
    20. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:11:p:6490-6507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.