IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p10-d299231.html
   My bibliography  Save this article

Prediction of the Energy Consumption Variation Trend in South Africa based on ARIMA, NGM and NGM-ARIMA Models

Author

Listed:
  • Minglu Ma

    (School of Economics and Management, China University of Petroleum (East China), Qingdao 266580, China)

  • Zhuangzhuang Wang

    (Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institution of Marine Geology, Qingdao 266071, China
    Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China)

Abstract

South Africa’s energy consumption takes up about one-third of that in the whole African continent, ranking the first place in Africa. However, there are few researches on the prediction of energy consumption in South Africa. In this study, based on the data of South Africa’s energy consumption during 1998–2016, Autoregressive Integrated Moving Average (ARIMA) model, nonlinear grey model (NGM) and nonlinear grey model–autoregressive integrated moving average (NGM-ARIMA) model are adopted to predict South Africa’s energy consumption during 2017–2030. After using these NGM, ARIMA and NGM-ARIMA, the mean absolute percent errors (MAPE) are 2.827%, 2.655% and 1.772%, respectively, which indicates that the predicted result has very high reliability. The prediction results show that the energy consumption in South Africa will keep increasing with the growth rate of about 7.49% in the next 14 years. This research result will provide scientific basis for the policy adjustment of energy supply and demand in South Africa and the prediction techniques used in the research will have reference function for the energy consumption study in other African countries.

Suggested Citation

  • Minglu Ma & Zhuangzhuang Wang, 2019. "Prediction of the Energy Consumption Variation Trend in South Africa based on ARIMA, NGM and NGM-ARIMA Models," Energies, MDPI, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:10-:d:299231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsikata, M. & Sebitosi, A.B., 2010. "Struggling to wean a society away from a century-old legacy of coal based power: Challenges and possibilities for South African Electric supply future," Energy, Elsevier, vol. 35(3), pages 1281-1288.
    2. Zhao, Huiru & Guo, Sen, 2016. "An optimized grey model for annual power load forecasting," Energy, Elsevier, vol. 107(C), pages 272-286.
    3. Zheng-Xin Wang, 2014. "Nonlinear Grey Prediction Model with Convolution Integral NGMC and Its Application to the Forecasting of China’s Industrial Emissions," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    4. Mentis, Dimitrios & Hermann, Sebastian & Howells, Mark & Welsch, Manuel & Siyal, Shahid Hussain, 2015. "Assessing the technical wind energy potential in Africa a GIS-based approach," Renewable Energy, Elsevier, vol. 83(C), pages 110-125.
    5. Walwyn, David Richard & Brent, Alan Colin, 2015. "Renewable energy gathers steam in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 390-401.
    6. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions," Energy, Elsevier, vol. 163(C), pages 151-167.
    7. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    8. Shuyu Li & Rongrong Li, 2017. "Comparison of Forecasting Energy Consumption in Shandong, China Using the ARIMA Model, GM Model, and ARIMA-GM Model," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    9. Thopil, George Alex & Pouris, Anastassios, 2016. "A 20 year forecast of water usage in electricity generation for South Africa amidst water scarce conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1106-1121.
    10. Inglesi, Roula, 2010. "Aggregate electricity demand in South Africa: Conditional forecasts to 2030," Applied Energy, Elsevier, vol. 87(1), pages 197-204, January.
    11. Gavin Boyd & Dain Na & Zhong Li & Spencer Snowling & Qianqian Zhang & Pengxiao Zhou, 2019. "Influent Forecasting for Wastewater Treatment Plants in North America," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    12. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    13. Sigauke, C. & Chikobvu, D., 2011. "Prediction of daily peak electricity demand in South Africa using volatility forecasting models," Energy Economics, Elsevier, vol. 33(5), pages 882-888, September.
    14. Odhiambo, Nicholas M., 2009. "Savings and economic growth in South Africa: A multivariate causality test," Journal of Policy Modeling, Elsevier, vol. 31(5), pages 708-718, September.
    15. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    16. Oyedepo, Sunday Olayinka, 2012. "On energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2583-2598.
    17. Fadare, D.A., 2009. "Modelling of solar energy potential in Nigeria using an artificial neural network model," Applied Energy, Elsevier, vol. 86(9), pages 1410-1422, September.
    18. Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
    2. Hua Liu & Xiaofen Lin & Jinhuan Wei & Lei Hu, 2023. "Assessing Environmental Sustainability Based on the Three-Dimensional Emergy Ecological Footprint (3D EEF) Model: A Case Study of Gansu Province, China," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    3. Gwiman Bak & Youngchul Bae, 2020. "Predicting the Amount of Electric Power Transaction Using Deep Learning Methods," Energies, MDPI, vol. 13(24), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
    2. Wang, Qiang & Song, Xiaoxing & Li, Rongrong, 2018. "A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production," Energy, Elsevier, vol. 165(PB), pages 1320-1331.
    3. Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
    4. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    5. Lili Wang & Lina Zhan & Rongrong Li, 2019. "Prediction of the Energy Demand Trend in Middle Africa—A Comparison of MGM, MECM, ARIMA and BP Models," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    6. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    7. Shuyu Li & Xuan Yang & Rongrong Li, 2019. "Forecasting Coal Consumption in India by 2030: Using Linear Modified Linear (MGM-ARIMA) and Linear Modified Nonlinear (BP-ARIMA) Combined Models," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    8. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    9. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    10. Feng Jiang & Xue Yang & Shuyu Li, 2018. "Comparison of Forecasting India’s Energy Demand Using an MGM, ARIMA Model, MGM-ARIMA Model, and BP Neural Network Model," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    11. Huang, Liqiao & Liao, Qi & Qiu, Rui & Liang, Yongtu & Long, Yin, 2021. "Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19," Applied Energy, Elsevier, vol. 283(C).
    12. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions," Energy, Elsevier, vol. 163(C), pages 151-167.
    13. Karakurt, Izzet, 2021. "Modelling and forecasting the oil consumptions of the BRICS-T countries," Energy, Elsevier, vol. 220(C).
    14. Yeqi An & Yulin Zhou & Rongrong Li, 2019. "Forecasting India’s Electricity Demand Using a Range of Probabilistic Methods," Energies, MDPI, vol. 12(13), pages 1-24, July.
    15. Anca Mehedintu & Mihaela Sterpu & Georgeta Soava, 2018. "Estimation and Forecasts for the Share of Renewable Energy Consumption in Final Energy Consumption by 2020 in the European Union," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    16. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    17. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    18. Ugwoke, B. & Gershon, O. & Becchio, C. & Corgnati, S.P. & Leone, P., 2020. "A review of Nigerian energy access studies: The story told so far," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Giwa, Adewale & Alabi, Adetunji & Yusuf, Ahmed & Olukan, Tuza, 2017. "A comprehensive review on biomass and solar energy for sustainable energy generation in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 620-641.
    20. Arouna, Aminou & Fatognon, Irene Akoko & Saito, Kazuki & Futakuchi, Koichi, 2021. "Moving toward rice self-sufficiency in sub-Saharan Africa by 2030: Lessons learned from 10 years of the Coalition for African Rice Development," World Development Perspectives, Elsevier, vol. 21(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:10-:d:299231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.