IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1764-d229724.html
   My bibliography  Save this article

Grid Load Reduction through Optimized PV Power Utilization in Intermittent Grids Using a Low-Cost Hardware Platform

Author

Listed:
  • Mashood Nasir

    (Department of Electrical Engineering, School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan)

  • Hassan Abbas Khan

    (Department of Electrical Engineering, School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan)

  • Irfan Khan

    (Department of Marine Engineering Technology in a joint appointment with Electrical and Computer Engineering, Texas A&M University, Galveston, TX 77554, USA)

  • Naveed ul Hassan

    (Department of Electrical Engineering, School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan)

  • Nauman Ahmad Zaffar

    (Department of Electrical Engineering, School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan)

  • Aneeq Mehmood

    (Center for Integrated Sensor Systems, Faculty of Health and Medicine, Danube University Krems, Krems 3500, Austria)

  • Thilo Sauter

    (Center for Integrated Sensor Systems, Faculty of Health and Medicine, Danube University Krems, Krems 3500, Austria)

  • S. M. Muyeen

    (Department of Electrical and Computer Engineering, Faculty of Science & Engineering, Curtin University, Perth 6845, Australia)

Abstract

Renewable energy incorporation in many countries takes different forms. In many developed countries, grid-tied solar photovoltaic (PV) installations are widely coupled with lucrative Feed-in-Tariffs (FiT). However, conventional grid-tied solutions are not readily viable in many developing countries mainly due to intermittent grids with load shedding and, in some cases, lack of net-metering or FiT. Load shedding refers to an intentional electrical power shutdown by the utility company where electricity delivery is stopped for non-overlapping periods of time over different parts of the distribution region. This results in a non-continuous availability of the utility grid for many consumers over the course of a day. In this work, the key challenges in the integration of solar energy explicitly in residential power back-up units are reviewed and system hardware level requirements to allow optimized solar PV utilization in such intermittent grid environments are analyzed. Further, based upon the low-cost sensing and real-time monitoring scheme, an online optimization framework enabling efficient solar incorporation in existing systems to achieve minimum grid dependence in intermittent grid environments is also provided. This work is particularly targeted for over 1.5 billion residents of semi-electrified regions in South Asia and Africa with the weak and intermittent grid.

Suggested Citation

  • Mashood Nasir & Hassan Abbas Khan & Irfan Khan & Naveed ul Hassan & Nauman Ahmad Zaffar & Aneeq Mehmood & Thilo Sauter & S. M. Muyeen, 2019. "Grid Load Reduction through Optimized PV Power Utilization in Intermittent Grids Using a Low-Cost Hardware Platform," Energies, MDPI, vol. 12(9), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1764-:d:229724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    2. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    3. Rodrigo Martins & Holger C. Hesse & Johanna Jungbauer & Thomas Vorbuchner & Petr Musilek, 2018. "Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications," Energies, MDPI, vol. 11(8), pages 1-22, August.
    4. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.
    5. Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Joel Donaldo Verdugo-Diaz, 2018. "Stand-Alone Photovoltaic System Assessment in Warmer Urban Areas in Mexico," Energies, MDPI, vol. 11(2), pages 1-13, January.
    6. Rohankar, Nishant & Jain, A.K. & Nangia, Om P. & Dwivedi, Prasoom, 2016. "A study of existing solar power policy framework in India for viability of the solar projects perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 510-518.
    7. Hossain, M.F. & Hossain, S. & Uddin, M.J., 2017. "Renewable energy: Prospects and trends in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 44-49.
    8. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Sarmah, Nabin & Mallick, Tapas Kumar & , 2014. "Feed-in tariff for solar photovoltaic: The rise of Japan," Renewable Energy, Elsevier, vol. 68(C), pages 636-643.
    9. Khan, Hassan A. & Pervaiz, Saad, 2013. "Technological review on solar PV in Pakistan: Scope, practices and recommendations for optimized system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 147-154.
    10. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    11. Numbi, B.P. & Malinga, S.J., 2017. "Optimal energy cost and economic analysis of a residential grid-interactive solar PV system- case of eThekwini municipality in South Africa," Applied Energy, Elsevier, vol. 186(P1), pages 28-45.
    12. Ahmad, Ali & Saqib, Muhammad Asghar & Rahman Kashif, Syed Abdul & Javed, Muhammad Yaqoob & Hameed, Abdul & Khan, Muhammad Usman, 2016. "Impact of wide-spread use of uninterruptible power supplies on Pakistan's power system," Energy Policy, Elsevier, vol. 98(C), pages 629-636.
    13. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    14. Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & István Háber & Gábor Pintér, 2018. "Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe," Energies, MDPI, vol. 11(6), pages 1-17, June.
    15. Gábor Pintér & Nóra Hegedűsné Baranyai & Alec Wiliams & Henrik Zsiborács, 2018. "Study of Photovoltaics and LED Energy Efficiency: Case Study in Hungary," Energies, MDPI, vol. 11(4), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.
    2. M. Bilal Nasir & Asif Hussain & Kamran Ali Khan Niazi & Mashood Nasir, 2022. "An Optimal Energy Management System (EMS) for Residential and Industrial Microgrids," Energies, MDPI, vol. 15(17), pages 1-18, August.
    3. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.
    4. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    5. Arifa Tanveer & Shihong Zeng & Muhammad Irfan & Rui Peng, 2021. "Do Perceived Risk, Perception of Self-Efficacy, and Openness to Technology Matter for Solar PV Adoption? An Application of the Extended Theory of Planned Behavior," Energies, MDPI, vol. 14(16), pages 1-24, August.
    6. Mohammed Abdullah H. Alshehri & Youguang Guo & Gang Lei, 2023. "Energy Management Strategies of Grid-Connected Microgrids under Different Reliability Conditions," Energies, MDPI, vol. 16(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    2. Xiaoyang Song & Yaohuan Huang & Chuanpeng Zhao & Yuxin Liu & Yanguo Lu & Yongguo Chang & Jie Yang, 2018. "An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images," Energies, MDPI, vol. 11(11), pages 1-14, November.
    3. Maria Simona Răboacă & Gheorghe Badea & Adrian Enache & Constantin Filote & Gabriel Răsoi & Mihai Rata & Alexandru Lavric & Raluca-Andreea Felseghi, 2019. "Concentrating Solar Power Technologies," Energies, MDPI, vol. 12(6), pages 1-17, March.
    4. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    5. Moath Alsafasfeh & Ikhlas Abdel-Qader & Bradley Bazuin & Qais Alsafasfeh & Wencong Su, 2018. "Unsupervised Fault Detection and Analysis for Large Photovoltaic Systems Using Drones and Machine Vision," Energies, MDPI, vol. 11(9), pages 1-18, August.
    6. Hyunji Lee & Katherine A. Kim, 2018. "Design Considerations for Parallel Differential Power Processing Converters in a Photovoltaic-Powered Wearable Application," Energies, MDPI, vol. 11(12), pages 1-17, November.
    7. Huadian Xu & Jianhui Su & Ning Liu & Yong Shi, 2018. "A Grid-Supporting Photovoltaic System Implemented by a VSG with Energy Storage," Energies, MDPI, vol. 11(11), pages 1-19, November.
    8. Carlo Renno, 2018. "Experimental and Theoretical Analysis of a Linear Focus CPV/T System for Cogeneration Purposes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    9. Alin Lin & Ming Lu & Pingjun Sun, 2018. "The Influence of Local Environmental, Economic and Social Variables on the Spatial Distribution of Photovoltaic Applications across China’s Urban Areas," Energies, MDPI, vol. 11(8), pages 1-14, July.
    10. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    11. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    12. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    13. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    14. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    15. Huse, Cristian & Lucinda, Claudio & Cardoso, Andre Ribeiro, 2020. "Consumer response to energy label policies: Evidence from the Brazilian energy label program," Energy Policy, Elsevier, vol. 138(C).
    16. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    17. Muhammad Sharif & Farzana Naheed Khan, 2023. "Unveiling the Implications of Energy Poverty for Educational Attainments in Pakistan: A Multidimensional Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 472-483, September.
    18. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    19. Jacopo Bonan & Stefano Pareglio & Massimo Tavoni, 2014. "Access to Modern Energy: a Review of Impact Evaluations," Working Papers 2014.96, Fondazione Eni Enrico Mattei.
    20. Rafique, M. Mujahid & Rehman, S., 2017. "National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 156-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1764-:d:229724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.