IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p284-d128522.html
   My bibliography  Save this article

Stand-Alone Photovoltaic System Assessment in Warmer Urban Areas in Mexico

Author

Listed:
  • Alberto-Jesus Perea-Moreno

    (Departamento de Física Aplicada, Universidad de Córdoba, CEIA3, Campus de Rabanales, 14071 Córdoba, Spain)

  • Quetzalcoatl Hernandez-Escobedo

    (Faculty of Engineering, Campus Coatzacoalcos, University of Veracruz, Veracruz 96535, Mexico)

  • Javier Garrido

    (Faculty of Engineering, Campus Coatzacoalcos, University of Veracruz, Veracruz 96535, Mexico)

  • Joel Donaldo Verdugo-Diaz

    (Faculty of Engineering, Campus Coatzacoalcos, University of Veracruz, Veracruz 96535, Mexico)

Abstract

The aim of this study is to examine the possibility of using a stand-alone photovoltaic system (SAPVS) for electricity generation in urban areas in Southern Mexico. In Mexico, an urban area is defined as an area where more than 2500 inhabitants live. Due to constant migration from the countryside to the cities, the number of inhabitants of urban localities has been increasing. Global horizontal irradiation (GHI) data were recorded every 10 min during 2014–2016 in Coatzacoalcos in the state of Veracruz located on 18°08′09″ N and 94°27′48″ W. In this study, batteries represented 77% of the total cost, 12 PV panels of 310 W could export 5.41 MWh to the grid, and an inverter with an integrated controller and charger was selected, which decreased the initial cost. The city of Coatzacoalcos was chosen because the average annual temperature is 28°, with an average relative humidity of 75% and an average irradiance of 5.3 kWh/m 2 /day. An emission factor 0.505 tCO 2 /MWh of greenhouse gases (GHG) were obtained, based on the power system, the reduction of net annual GHG would be 11 tCO 2 and a financial revenue of 36.951 × 10 3 $/tCO 2 would be obtained. Financial parameters such as a 36.3% Internal Rate Return (IRR) and 3.4 years payback show the financial viability of this investment. SAPVSs in urban areas in Mexico could be a benefit as long as housing has a high consumption of electricity.

Suggested Citation

  • Alberto-Jesus Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Joel Donaldo Verdugo-Diaz, 2018. "Stand-Alone Photovoltaic System Assessment in Warmer Urban Areas in Mexico," Energies, MDPI, vol. 11(2), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:284-:d:128522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Illanes, Rafael & De Francisco, Adolfo & Núñez, Francisco & De Blas, Marian & García, Almudena & Torres, José Luis, 2014. "Dynamic simulation and modelling of stand-alone PV systems by using state equations and numerical integration methods," Applied Energy, Elsevier, vol. 135(C), pages 440-449.
    2. Posadillo, R. & López Luque, R., 2008. "Approaches for developing a sizing method for stand-alone PV systems with variable demand," Renewable Energy, Elsevier, vol. 33(5), pages 1037-1048.
    3. Bhuiyan, M.M.H. & Ali Asgar, M., 2003. "Sizing of a stand-alone photovoltaic power system at Dhaka," Renewable Energy, Elsevier, vol. 28(6), pages 929-938.
    4. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    5. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    6. Yushchenko, Alisa & de Bono, Andrea & Chatenoux, Bruno & Kumar Patel, Martin & Ray, Nicolas, 2018. "GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2088-2103.
    7. Ibrahim, Ibrahim Anwar & Khatib, Tamer & Mohamed, Azah, 2017. "Optimal sizing of a standalone photovoltaic system for remote housing electrification using numerical algorithm and improved system models," Energy, Elsevier, vol. 126(C), pages 392-403.
    8. Alberto-Jesús Perea-Moreno & Quetzalcoatl Hernandez-Escobedo, 2016. "Solar Resource for Urban Communities in the Baja California Peninsula, Mexico," Energies, MDPI, vol. 9(11), pages 1-15, November.
    9. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    10. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    11. Grande, Genice & Islas, Jorge & Rios, Mario, 2015. "Technical and economic analysis of Domestic High Consumption Tariff niche market for photovoltaic systems in the Mexican household sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 738-748.
    12. Garcia-Heller, Veronica & Espinasa, Ramón & Paredes, Stephan, 2016. "Forecast study of the supply curve of solar and wind technologies in Argentina, Brazil, Chile and Mexico," Renewable Energy, Elsevier, vol. 93(C), pages 168-179.
    13. Okoye, Chiemeka Onyeka & Solyalı, Oğuz, 2017. "Optimal sizing of stand-alone photovoltaic systems in residential buildings," Energy, Elsevier, vol. 126(C), pages 573-584.
    14. Posadillo, R. & López Luque, R., 2008. "A sizing method for stand-alone PV installations with variable demand," Renewable Energy, Elsevier, vol. 33(5), pages 1049-1055.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nun Pitalúa-Díaz & Fernando Arellano-Valmaña & Jose A. Ruz-Hernandez & Yasuhiro Matsumoto & Hussain Alazki & Enrique J. Herrera-López & Jesús Fernando Hinojosa-Palafox & A. García-Juárez & Ricardo Art, 2019. "An ANFIS-Based Modeling Comparison Study for Photovoltaic Power at Different Geographical Places in Mexico," Energies, MDPI, vol. 12(14), pages 1-16, July.
    2. Mashood Nasir & Hassan Abbas Khan & Irfan Khan & Naveed ul Hassan & Nauman Ahmad Zaffar & Aneeq Mehmood & Thilo Sauter & S. M. Muyeen, 2019. "Grid Load Reduction through Optimized PV Power Utilization in Intermittent Grids Using a Low-Cost Hardware Platform," Energies, MDPI, vol. 12(9), pages 1-21, May.
    3. Amadou Fousseyni Touré & Sid Ali Addouche & Fadaba Danioko & Badié Diourté & Abderrahman El Mhamedi, 2019. "Hybrid Systems Optimization: Application to Hybrid Systems Photovoltaic Connected to Grid. A Mali Case Study," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    4. Quetzalcoatl Hernandez-Escobedo & Alida Ramirez-Jimenez & Jesús Manuel Dorador-Gonzalez & Miguel-Angel Perea-Moreno & Alberto-Jesus Perea-Moreno, 2020. "Sustainable Solar Energy in Mexican Universities. Case Study: The National School of Higher Studies Juriquilla (UNAM)," Sustainability, MDPI, vol. 12(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    3. Jakhrani, Abdul Qayoom & Othman, Al-Khalid & Rigit, Andrew Ragai Henry & Samo, Saleem Raza & Kamboh, Shakeel Ahmed, 2012. "A novel analytical model for optimal sizing of standalone photovoltaic systems," Energy, Elsevier, vol. 46(1), pages 675-682.
    4. Okoye, Chiemeka Onyeka & Taylan, Onur & Baker, Derek K., 2016. "Solar energy potentials in strategically located cities in Nigeria: Review, resource assessment and PV system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 550-566.
    5. Ridha, Hussein Mohammed & Gomes, Chandima & Hazim, Hashim & Ahmadipour, Masoud, 2020. "Sizing and implementing off-grid stand-alone photovoltaic/battery systems based on multi-objective optimization and techno-economic (MADE) analysis," Energy, Elsevier, vol. 207(C).
    6. Pérez-Denicia, Eduardo & Fernández-Luqueño, Fabián & Vilariño-Ayala, Darnes & Manuel Montaño-Zetina, Luis & Alfonso Maldonado-López, Luis, 2017. "Renewable energy sources for electricity generation in Mexico: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 597-613.
    7. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    8. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    9. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    10. Tamer Khatib & Dhiaa Halboot Muhsen, 2020. "Optimal Sizing of Standalone Photovoltaic System Using Improved Performance Model and Optimization Algorithm," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    11. Javier Carroquino & José-Luis Bernal-Agustín & Rodolfo Dufo-López, 2019. "Standalone Renewable Energy and Hydrogen in an Agricultural Context: A Demonstrative Case," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    12. Zavala, V. & López-Luque, R. & Reca, J. & Martínez, J. & Lao, M.T., 2020. "Optimal management of a multisector standalone direct pumping photovoltaic irrigation system," Applied Energy, Elsevier, vol. 260(C).
    13. Okoye, Chiemeka Onyeka & Oranekwu-Okoye, Blessing Chioma, 2018. "Economic feasibility of solar PV system for rural electrification in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2537-2547.
    14. Li, Guiqiang & Jin, Yi & Akram, M.W. & Chen, Xiao, 2017. "Research and current status of the solar photovoltaic water pumping system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 440-458.
    15. Hamidat, A. & Benyoucef, B., 2009. "Systematic procedures for sizing photovoltaic pumping system, using water tank storage," Energy Policy, Elsevier, vol. 37(4), pages 1489-1501, April.
    16. Fouad, M.M. & Shihata, Lamia A. & Morgan, ElSayed I., 2017. "An integrated review of factors influencing the perfomance of photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1499-1511.
    17. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    18. Casares, F.J. & Lopez-Luque, R. & Posadillo, R. & Varo-Martinez, M., 2014. "Mathematical approach to the characterization of daily energy balance in autonomous photovoltaic solar systems," Energy, Elsevier, vol. 72(C), pages 393-404.
    19. Ren, Zhengen & Paevere, Phillip & Chen, Dong, 2019. "Feasibility of off-grid housing under current and future climates," Applied Energy, Elsevier, vol. 241(C), pages 196-211.
    20. Muhsen, Dhiaa Halboot & Nabil, Moamen & Haider, Haider Tarish & Khatib, Tamer, 2019. "A novel method for sizing of standalone photovoltaic system using multi-objective differential evolution algorithm and hybrid multi-criteria decision making methods," Energy, Elsevier, vol. 174(C), pages 1158-1175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:284-:d:128522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.