IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1584-d226000.html
   My bibliography  Save this article

Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development

Author

Listed:
  • Nathalie Spittler

    (Department of Life and Environmental Sciences, University of Iceland, Reykjavik 101, Iceland, Sæmundargata 2, 101 Reykjavík, Iceland
    Department of Economics, University of Clermont Auvergne, 63000 Clermont Ferrand, France)

  • Ganna Gladkykh

    (Department of Life and Environmental Sciences, University of Iceland, Reykjavik 101, Iceland, Sæmundargata 2, 101 Reykjavík, Iceland
    Department of Economics, University of Clermont Auvergne, 63000 Clermont Ferrand, France)

  • Arnaud Diemer

    (Department of Economics, University of Clermont Auvergne, 63000 Clermont Ferrand, France)

  • Brynhildur Davidsdottir

    (Department of Life and Environmental Sciences, University of Iceland, Reykjavik 101, Iceland, Sæmundargata 2, 101 Reykjavík, Iceland)

Abstract

This study contributes to a better understanding of where to place different energy modelling tools and support better decision-making related to the sustainable development of energy systems. It is argued that through the connection of the energy field and the field of sustainable development, the current energy paradigm—encompassing economic, environmental and social aspects—has emerged. This paper provides an analysis of different categories of existing energy system models and their ability to provide answers to questions arising from the current energy paradigm formulated within this study. The current energy paradigm and the relevant questions were defined by conducting conceptual framework analysis. The overarching question of the current paradigm asks how different energy pathways impact on the (sustainable) development of the energy system and overall (sustainable) development globally and nationally. A review of energy system models was conducted to analyse what questions of the current energy paradigm are addressed by which models. The results show that most models address aspects of the current energy paradigm but often in a simplified way. To answer some of the questions of the current energy paradigm in more depth and to get novel insights on sustainable energy system development, it might be necessary use complementary methods in addition to traditional energy modelling methodological approaches.

Suggested Citation

  • Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Energies, MDPI, vol. 12(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1584-:d:226000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    2. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    3. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    4. Ken’ichi Matsumoto & Kaoru Tachiiri & Michio Kawamiya, 2018. "Evaluating multiple emission pathways for fixed cumulative carbon dioxide emissions from global-scale socioeconomic perspectives," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 1-26, January.
    5. Grubb, Michael, 1993. "Policy modelling for climate change : The missing models," Energy Policy, Elsevier, vol. 21(3), pages 203-208, March.
    6. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) Part 2: Methodology," Ecological Economics, Elsevier, vol. 73(C), pages 158-167.
    7. Huang, Bwo-Nung & Hwang, M.J. & Yang, C.W., 2008. "Causal relationship between energy consumption and GDP growth revisited: A dynamic panel data approach," Ecological Economics, Elsevier, vol. 67(1), pages 41-54, August.
    8. Toshihiko Masui & Kenichi Matsumoto & Yasuaki Hijioka & Tsuguki Kinoshita & Toru Nozawa & Sawako Ishiwatari & Etsushi Kato & P. Shukla & Yoshiki Yamagata & Mikiko Kainuma, 2011. "An emission pathway for stabilization at 6 Wm −2 radiative forcing," Climatic Change, Springer, vol. 109(1), pages 59-76, November.
    9. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    10. Meier, Alan & Rosenfeld, Arthur H. & Wright, Janice, 1982. "Supply curves of conserved energy for California's residential sector," Energy, Elsevier, vol. 7(4), pages 347-358.
    11. Vrontisi, Zoi & Abrell, Jan & Neuwahl, Frederik & Saveyn, Bert & Wagner, Fabian, 2016. "Economic impacts of EU clean air policies assessed in a CGE framework," Environmental Science & Policy, Elsevier, vol. 55(P1), pages 54-64.
    12. Shilpa Rao, Ilkka Keppo and Keywan Riahi, 2006. "Importance of Technological Change and Spillovers in Long-Term Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 123-140.
    13. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    14. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    15. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    16. Benjamin K. Sovacool & Raphael J. Heffron & Darren McCauley & Andreas Goldthau, 2016. "Energy decisions reframed as justice and ethical concerns," Nature Energy, Nature, vol. 1(5), pages 1-6, May.
    17. Dieter Helm, 2005. "The Assessment: The New Energy Paradigm," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 1-18, Spring.
    18. Vera, Ivan & Langlois, Lucille, 2007. "Energy indicators for sustainable development," Energy, Elsevier, vol. 32(6), pages 875-882.
    19. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    20. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    21. Jaccard,Mark, 2006. "Sustainable Fossil Fuels," Cambridge Books, Cambridge University Press, number 9780521679794.
    22. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams, 2016. "The Deep Decarbonization Pathways Project (DDPP): insights and emerging issues," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 1-6, June.
    23. Adil Najam & Cutler Cleveland, 2003. "Energy and Sustainable Development at Global Environmental Summits: An Evolving Agenda," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 5(1), pages 117-138, March.
    24. DeCarolis, Joseph F. & Hunter, Kevin & Sreepathi, Sarat, 2012. "The case for repeatable analysis with energy economy optimization models," Energy Economics, Elsevier, vol. 34(6), pages 1845-1853.
    25. Ackerman, Frank & Fisher, Jeremy, 2013. "Is there a water–energy nexus in electricity generation? Long-term scenarios for the western United States," Energy Policy, Elsevier, vol. 59(C), pages 235-241.
    26. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) part 1: An overview of biophysical economics," Ecological Economics, Elsevier, vol. 73(C), pages 152-157.
    27. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    28. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    29. P. Capros & Denise Van Regemorter & Leonidas Paroussos & P. Karkatsoulis & C. Fragkiadakis & S. Tsani & I. Charalampidis & Tamas Revesz, 2013. "GEM-E3 Model Documentation," JRC Research Reports JRC83177, Joint Research Centre.
    30. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    31. William D. Nordhaus, 1992. "The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming," Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics, Yale University.
    32. Jane Ebinger & Walter Vergara, 2011. "Climate Impacts on Energy Systems : Key Issues for Energy Sector Adaptation," World Bank Publications - Books, The World Bank Group, number 2271, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anja Bauer & Leo Capari & Daniela Fuchs & Titus Udrea, 2023. "Diversification, integration, and opening: developments in modelling for policy," Science and Public Policy, Oxford University Press, vol. 50(6), pages 977-987.
    2. Viktorija Bobinaite & Inga Konstantinaviciute & Arvydas Galinis & Mária Bartek-Lesi & Viktor Rácz & Bettina Dézsi, 2022. "Energy Sufficiency in the Household Sector of Lithuania and Hungary: The Case of Heated Floor Area," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    3. César Berna-Escriche & Ángel Pérez-Navarro & Alberto Escrivá & Elías Hurtado & José Luis Muñoz-Cobo & María Cristina Moros, 2021. "Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    4. Spittler, Nathalie & Davidsdottir, Brynhildur & Shafiei, Ehsan & Diemer, Arnaud, 2021. "Implications of renewable resource dynamics for energy system planning: The case of geothermal and hydropower in Kenya," Energy Policy, Elsevier, vol. 150(C).
    5. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Charlotte Senkpiel & Audrey Dobbins & Christina Kockel & Jan Steinbach & Ulrich Fahl & Farina Wille & Joachim Globisch & Sandra Wassermann & Bert Droste-Franke & Wolfgang Hauser & Claudia Hofer & Lars, 2020. "Integrating Methods and Empirical Findings from Social and Behavioural Sciences into Energy System Models—Motivation and Possible Approaches," Energies, MDPI, vol. 13(18), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    2. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Jarvis, Andrew, 2018. "Energy Returns and The Long-run Growth of Global Industrial Society," Ecological Economics, Elsevier, vol. 146(C), pages 722-729.
    5. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    8. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    9. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    10. Rhodes, Ekaterina & Hoyle, Aaron & McPherson, Madeleine & Craig, Kira, 2022. "Understanding climate policy projections: A scoping review of energy-economy models in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Graham Palmer, 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling," Energies, MDPI, vol. 11(4), pages 1-17, April.
    12. Gladkykh, Ganna & Spittler, Nathalie & Davíðsdóttir, Brynhildur & Diemer, Arnaud, 2018. "Steady state of energy: Feedbacks and leverages for promoting or preventing sustainable energy system development," Energy Policy, Elsevier, vol. 120(C), pages 121-131.
    13. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    14. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    15. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    17. César Berna-Escriche & Ángel Pérez-Navarro & Alberto Escrivá & Elías Hurtado & José Luis Muñoz-Cobo & María Cristina Moros, 2021. "Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    18. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
    20. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1584-:d:226000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.