IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1557-d225652.html
   My bibliography  Save this article

Economies of Scale in the South Korean Natural Gas Industry

Author

Listed:
  • Jeong-Joon Yu

    (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology, 232 Gongreung-Ro, Nowon-Gu, Seoul 01811, Korea)

  • Seung-Hoon Yoo

    (Department of Energy Policy, Graduate School of Energy & Environment, Seoul National University of Science & Technology, 232 Gongreung-Ro, Nowon-Gu, Seoul 01811, Korea)

  • Chulwoo Baek

    (Department of International Trade, Duksung Women’s University, 33 Samyang-Ro 144 Gil, Dobong-Gu, Seoul 01369, Korea)

Abstract

The South Korean natural gas (NG) import volume in 2017 was 33.7 million tonnes per annum (13.1%), making it the second-largest NG-importing country in the world after Japan. Nevertheless, the NG wholesale market in South Korea has remained monopolistic since the Korea Gas Corporation (KOGAS) was established in 1983. Thus, the purpose of this study is to determine whether the NG wholesale market in South Korea has economies of scale by estimating the translog cost function and estimating the minimum efficient scale (MES) using robust linear regression. We used quarterly business reports of KOGAS from the first quarter of 2000 to the second quarter of 2018 to construct the data. The results showed that diseconomies of scale existed in all the years in the first and fourth quarters, and the second quarter showed the same result during 2010–2014. From 2011, the production quantity of all the quarters has exceeded the MES (5.81 million tons). The reason for these results is that the demand for NG power generation and city gas has surged since 2000, while the monopolistic structure of the past has been maintained. This study implies that it would be more efficient to allocate some of KOGAS’s additional import volume to the existing private NG companies and mitigate the regulation on resale.

Suggested Citation

  • Jeong-Joon Yu & Seung-Hoon Yoo & Chulwoo Baek, 2019. "Economies of Scale in the South Korean Natural Gas Industry," Energies, MDPI, vol. 12(8), pages 1-10, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1557-:d:225652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1557/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1557/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Sun-Young & Lee, Kyoung-Sil & Yoo, Seung-Hoon, 2016. "Economies of scale in the Korean district heating system: A variable cost function approach," Energy Policy, Elsevier, vol. 88(C), pages 197-203.
    2. Oh, Dong-hyun & Lee, Yong-Gil, 2016. "Productivity decomposition and economies of scale of Korean fossil-fuel power generation companies: 2001–2012," Energy, Elsevier, vol. 100(C), pages 1-9.
    3. Fetz, Aurelio & Filippini, Massimo, 2010. "Economies of vertical integration in the Swiss electricity sector," Energy Economics, Elsevier, vol. 32(6), pages 1325-1330, November.
    4. Nelson, Randy A, 1989. "On the Measurement of Capacity Utilization," Journal of Industrial Economics, Wiley Blackwell, vol. 37(3), pages 273-286, March.
    5. Alaeifar, Mozhgan & Farsi, Mehdi & Filippini, Massimo, 2014. "Scale economies and optimal size in the Swiss gas distribution sector," Energy Policy, Elsevier, vol. 65(C), pages 86-93.
    6. David S. Evans & James J. Heckman, 1988. "Rejoinder---Natural Monopoly and the Bell System: Response to Charnes, Cooper and Sueyoshi," Management Science, INFORMS, vol. 34(1), pages 27-38, January.
    7. Mehdi Farsi & Aurelio Fetz & Massimo Filippini, 2008. "Economies of Scale and Scope in Multi-Utilities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 123-144.
    8. Steven Renzetti, 1999. "Municipal Water Supply and Sewage Treatment: Costs, Prices and Distortions," Canadian Journal of Economics, Canadian Economics Association, vol. 32(3), pages 688-704, May.
    9. Farsi, Mehdi & Filippini, Massimo & Kuenzle, Michael, 2007. "Cost efficiency in the Swiss gas distribution sector," Energy Economics, Elsevier, vol. 29(1), pages 64-78, January.
    10. A. Charnes & W. W. Cooper & T. Sueyoshi, 1988. "A Goal Programming/Constrained Regression Review of the Bell System Breakup," Management Science, INFORMS, vol. 34(1), pages 1-26, January.
    11. Paola Fabbri & Giovanni Fraquelli & Roberto Giandrone, 2000. "Costs, technology and ownership of gas distribution in Italy," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 71-81.
    12. Guldmann, Jean-Michel, 1983. "Modeling the structure of gas distribution costs in urban areas," Regional Science and Urban Economics, Elsevier, vol. 13(3), pages 299-316, August.
    13. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byoung-Kuk Ju & Seung-Hoon Yoo & Chulwoo Baek, 2022. "Economies of Scale in City Gas Sector in Seoul, South Korea: Evidence from an Empirical Investigation," Sustainability, MDPI, vol. 14(9), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byoung-Kuk Ju & Seung-Hoon Yoo & Chulwoo Baek, 2022. "Economies of Scale in City Gas Sector in Seoul, South Korea: Evidence from an Empirical Investigation," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    2. Park, Sun-Young & Lee, Kyoung-Sil & Yoo, Seung-Hoon, 2016. "Economies of scale in the Korean district heating system: A variable cost function approach," Energy Policy, Elsevier, vol. 88(C), pages 197-203.
    3. Capece, Guendalina & Costa, Roberta & Di Pillo, Francesca, 2021. "Benchmarking the efficiency of natural gas distribution utilities in Italy considering size, ownership, and maturity," Utilities Policy, Elsevier, vol. 72(C).
    4. Alaeifar, Mozhgan & Farsi, Mehdi & Filippini, Massimo, 2014. "Scale economies and optimal size in the Swiss gas distribution sector," Energy Policy, Elsevier, vol. 65(C), pages 86-93.
    5. Oh, Dong-hyun, 2015. "Productivity growth, technical change and economies of scale of Korean fossil-fuel generation companies, 2001–2012: A dual approach," Energy Economics, Elsevier, vol. 49(C), pages 113-121.
    6. Goncharuk, Anatoliy G. & Storto, Corrado lo, 2017. "Challenges and policy implications of gas reform in Italy and Ukraine: Evidence from a benchmarking analysis," Energy Policy, Elsevier, vol. 101(C), pages 456-466.
    7. Mohammed Al-Mahish, 2017. "Economies of Scale, Technical Change, and Total Factor Productivity Growth of the Saudi Electricity Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 86-94.
    8. Farsi, Mehdi & Filippini, Massimo, 2009. "An analysis of cost efficiency in Swiss multi-utilities," Energy Economics, Elsevier, vol. 31(2), pages 306-315, March.
    9. Ajayi, Victor & Weyman-Jones, Thomas & Glass, Anthony, 2017. "Cost efficiency and electricity market structure: A case study of OECD countries," Energy Economics, Elsevier, vol. 65(C), pages 283-291.
    10. Paul Nillesen and Michael Pollitt, 2021. "Ownership Unbundling of Electricity Distribution Networks," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    11. Thomas P. Triebs & David S. Saal & Pablo Arocena & Subal C. Kumbhakar, 2016. "Estimating economies of scale and scope with flexible technology," Journal of Productivity Analysis, Springer, vol. 45(2), pages 173-186, April.
    12. Carvalho, Pedro & Marques, Rui Cunha & Berg, Sanford, 2012. "A meta-regression analysis of benchmarking studies on water utilities market structure," Utilities Policy, Elsevier, vol. 21(C), pages 40-49.
    13. Goto, Mika & Sueyoshi, Toshiyuki, 2009. "Productivity growth and deregulation of Japanese electricity distribution," Energy Policy, Elsevier, vol. 37(8), pages 3130-3138, August.
    14. Quan-Hoang Vuong & Manh-Tung Ho & Hong-Kong To Nguyen & Minh-Hoang Nguyen, 2019. "The trilemma of sustainable industrial growth: evidence from a piloting OECD’s Green city," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    15. Romano, Teresa & Cambini, Carlo & Fumagalli, Elena & Rondi, Laura, 2022. "Setting network tariffs with heterogeneous firms: The case of natural gas distribution," European Journal of Operational Research, Elsevier, vol. 297(1), pages 280-290.
    16. Bottasso, Anna & Conti, Maurizio & Piacenz, Massimiliano & Vannoni, Davide, 2011. "The appropriateness of the poolability assumption for multiproduct technologies: Evidence from the English water and sewerage utilities," International Journal of Production Economics, Elsevier, vol. 130(1), pages 112-117, March.
    17. Goto, Mika & Inoue, Tomohiro & Sueyoshi, Toshiyuki, 2013. "Structural reform of Japanese electric power industry: Separation between generation and transmission & distribution," Energy Policy, Elsevier, vol. 56(C), pages 186-200.
    18. Das, Nibedita, 2000. "Technology, efficiency and sustainability of competition in the Indian telecommunications sector," Information Economics and Policy, Elsevier, vol. 12(2), pages 133-154, June.
    19. Gugler, Klaus & Liebensteiner, Mario, 2019. "Productivity growth and incentive regulation in Austria's gas distribution," Energy Policy, Elsevier, vol. 134(C).
    20. Victor Ajayi & Michael Pollitt, 2022. "Changing times - Incentive regulation, corporate reorganisations, and productivity in Great Britain’s gas networks," Working Papers 023, The Productivity Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1557-:d:225652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.