IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i7p1373-d221282.html
   My bibliography  Save this article

The Co-Movement and Asymmetry between Energy and Grain Prices: Evidence from the Crude Oil and Corn Markets

Author

Listed:
  • Zhan-Ming Chen

    (School of Applied Economics, Renmin University of China, Beijing 100872, China)

  • Liyuan Wang

    (School of Applied Economics, Renmin University of China, Beijing 100872, China)

  • Xiao-Bing Zhang

    (School of Applied Economics, Renmin University of China, Beijing 100872, China)

  • Xinye Zheng

    (School of Applied Economics, Renmin University of China, Beijing 100872, China)

Abstract

This paper investigates the co-movement and asymmetric interactions between energy and grain prices, based on the evidence from the crude oil and corn markets, the most important energy and grain markets, respectively. Time series analysis indicates that there is a consistent trend between the crude oil price and corn price with a significant positive correlation coefficient 0.7471 during the sampling period, from January 2008 to February 2016. In addition, we find that there is a long-run equilibrium relationship between the two commodities’ prices. Moreover, while linear Granger causality tests suggest that there is a two-way Granger causality relationship between the price changes in the two markets, non-linear Granger causality tests suggest that there is only a one-way causality relationship from corn to oil price. However, both linear and non-linear Granger causality tests indicate the asymmetry of causality relationship between the two markets (the price change in corn market can more significantly Granger cause the change in crude oil market). Further analysis suggests that the contribution of the corn market to price discovery in a large commodity market is larger than that of the crude oil market.

Suggested Citation

  • Zhan-Ming Chen & Liyuan Wang & Xiao-Bing Zhang & Xinye Zheng, 2019. "The Co-Movement and Asymmetry between Energy and Grain Prices: Evidence from the Crude Oil and Corn Markets," Energies, MDPI, vol. 12(7), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1373-:d:221282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/7/1373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/7/1373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Coleman, Les, 2012. "Explaining crude oil prices using fundamental measures," Energy Policy, Elsevier, vol. 40(C), pages 318-324.
    2. Christopher L. Gilbert, 2010. "How to Understand High Food Prices," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(2), pages 398-425, June.
    3. Jian Yang & David A. Bessler & David J. Leatham, 2001. "Asset storability and price discovery in commodity futures markets: A new look," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 279-300, March.
    4. Trujillo-Barrera, Andres & Mallory, Mindy L. & Garcia, Philip, 2012. "Volatility Spillovers in U.S. Crude Oil, Ethanol, and Corn Futures Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-16, August.
    5. Sari, Ramazan & Hammoudeh, Shawkat & Chang, Chia-Lin & McAleer, Michael, 2012. "Causality between market liquidity and depth for energy and grains," Energy Economics, Elsevier, vol. 34(5), pages 1683-1692.
    6. Baeck, E.G. & Brock, W.A., 1992. "A Nonparametric Test for Independence of a Multivariate Time Series," Working papers 9204, Wisconsin Madison - Social Systems.
    7. Baffes, John, 2007. "Oil spills on other commodities," Resources Policy, Elsevier, vol. 32(3), pages 126-134, September.
    8. Yue-Jun Zhang & Yi-Ming Wei, 2011. "The dynamic influence of advanced stock market risk on international crude oil returns: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 967-978.
    9. Garbade, Kenneth D & Silber, William L, 1983. "Price Movements and Price Discovery in Futures and Cash Markets," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 289-297, May.
    10. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    11. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    12. Mr. Noureddine Krichene, 2008. "Crude Oil Prices: Trends and Forecast," IMF Working Papers 2008/133, International Monetary Fund.
    13. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    14. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    15. Zhang, Zibin & Lohr, Luanne & Escalante, Cesar & Wetzstein, Michael, 2010. "Food versus fuel: What do prices tell us?," Energy Policy, Elsevier, vol. 38(1), pages 445-451, January.
    16. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    17. Zhang, Yue-Jun, 2013. "Speculative trading and WTI crude oil futures price movement: An empirical analysis," Applied Energy, Elsevier, vol. 107(C), pages 394-402.
    18. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery," Resources Policy, Elsevier, vol. 35(3), pages 168-177, September.
    19. Zhang, Qiang & Reed, Michael R., 2008. "Examining the Impact of the World Crude Oil Price on China's Agricultural Commodity Prices: The Case of Corn, Soybean, and Pork," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6797, Southern Agricultural Economics Association.
    20. Zhang, Yue-Jun & Wang, Zi-Yi, 2013. "Investigating the price discovery and risk transfer functions in the crude oil and gasoline futures markets: Some empirical evidence," Applied Energy, Elsevier, vol. 104(C), pages 220-228.
    21. Mattos, Fabio & Garcia, Philip, 2004. "Price Discovery In Thinly Traded Markets: Cash And Futures Relationships In Brazilian Agricultural Futures Markets," 2004 Conference, April 19-20, 2004, St. Louis, Missouri 19019, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    22. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    23. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    24. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    25. Harri, Ardian & Nalley, Lanier & Hudson, Darren, 2009. "The Relationship between Oil, Exchange Rates, and Commodity Prices," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 41(2), pages 501-510, August.
    26. Zhang, Yue-Jun & Fan, Ying & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Spillover effect of US dollar exchange rate on oil prices," Journal of Policy Modeling, Elsevier, vol. 30(6), pages 973-991.
    27. John Baffes, 2010. "More on the energy/nonenergy price link," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1555-1558.
    28. Hassouneh, Islam & Serra, Teresa & Goodwin, Barry K. & Gil, José M., 2012. "Non-parametric and parametric modeling of biodiesel, sunflower oil, and crude oil price relationships," Energy Economics, Elsevier, vol. 34(5), pages 1507-1513.
    29. Yaxian Lu & Longguang Yang & Lihong Liu, 2019. "Volatility Spillovers between Crude Oil and Agricultural Commodity Markets since the Financial Crisis," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    30. Baillie, Richard T. & Geoffrey Booth, G. & Tse, Yiuman & Zabotina, Tatyana, 2002. "Price discovery and common factor models," Journal of Financial Markets, Elsevier, vol. 5(3), pages 309-321, July.
    31. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    32. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    33. Avalos, Fernando, 2014. "Do oil prices drive food prices? The tale of a structural break," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 253-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Liu & Hao Dong & Pierre Failler, 2019. "The Oil Market Reactions to OPEC’s Announcements," Energies, MDPI, vol. 12(17), pages 1-15, August.
    2. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    3. Gaoke Liao & Zhenghui Li & Ziqing Du & Yue Liu, 2019. "The Heterogeneous Interconnections between Supply or Demand Side and Oil Risks," Energies, MDPI, vol. 12(11), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    2. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    3. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    4. Xu, Xiaojie, 2014. "Price Discovery in U.S. Corn Cash and Futures Markets: The Role of Cash Market Selection," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169809, Agricultural and Applied Economics Association.
    5. Maitra, Debasish & Guhathakurta, Kousik & Kang, Sang Hoon, 2021. "The good, the bad and the ugly relation between oil and commodities: An analysis of asymmetric volatility connectedness and portfolio implications," Energy Economics, Elsevier, vol. 94(C).
    6. Xiaojie Xu, 2018. "Cointegration and price discovery in US corn cash and futures markets," Empirical Economics, Springer, vol. 55(4), pages 1889-1923, December.
    7. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    8. Guellil, Mohammed Seghir & Benbouziane, Mohamed, 2018. "Volatility Linkages between Agricultural Commodity Prices, Oil Prices and Real USD Exchange Rate || Vínculos de volatilidad entre precios de productos agrícolas, precios del petróleo y tipo de cambio ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 71-83, Diciembre.
    9. Ebenezer, Appiah Collins & Jatoe, John Baptist D. & Mensa-Bonsu, Akwasi, 2018. "Food Price Sensitivity To Changes In Petroleum Price And Exchange Rate In Ghana: A Cointegration Analysis," 2018 Conference (2nd), August 8-11, Kumasi, Ghana 277791, Ghana Association of Agricultural Economists.
    10. Eissa, Mohamad Abdelaziz & Al Refai, Hisham, 2019. "Modelling the symmetric and asymmetric relationships between oil prices and those of corn, barley, and rapeseed oil," Resources Policy, Elsevier, vol. 64(C).
    11. Ahmed Ghorbel & Wajdi Hamma & Anis Jarboui, 2017. "Dependence between oil and commodities markets using time-varying Archimedean copulas and effectiveness of hedging strategies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1509-1542, July.
    12. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2014. "Oil price shocks and agricultural commodity prices," Energy Economics, Elsevier, vol. 44(C), pages 22-35.
    13. Yip, Pick Schen & Brooks, Robert & Do, Hung Xuan & Nguyen, Duc Khuong, 2020. "Dynamic volatility spillover effects between oil and agricultural products," International Review of Financial Analysis, Elsevier, vol. 69(C).
    14. Karoline Krätschell & Torsten Schmidt, 2017. "Long-run waves or short-run fluctuations – what establishes the correlation between oil and food prices?," Applied Economics, Taylor & Francis Journals, vol. 49(54), pages 5535-5546, November.
    15. M. Thenmozhi & Shipra Maurya, 2020. "Crude Oil Volatility Transmission Across Food Commodity Markets: A Multivariate BEKK-GARCH Approach," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 20(2), pages 131-164, August.
    16. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    17. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    18. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    19. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    20. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1373-:d:221282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.