IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p852-d210978.html
   My bibliography  Save this article

Economic Analysis and Environmental Impact Assessment of Heat Pump-Assisted Distillation in a Gas Fractionation Unit

Author

Listed:
  • Jisook Lee

    (Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeomro, Mapogu, Seoul 04107, Korea
    Equally contributed.)

  • Yongho Son

    (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehakro, Yuseonggu, Daejeon 34141, Korea
    Equally contributed.)

  • Kwang Soon Lee

    (Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeomro, Mapogu, Seoul 04107, Korea)

  • Wangyun Won

    (Department of Chemical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongnam 51140, Korea)

Abstract

The depletion of fossil fuels and environmental pollution (e.g., greenhouse gas emissions) through the combustion of fossil fuels have stimulated studies on new technologies able to curtail the energy consumption of existing fractionation units. In this regard, heat pumps have garnered substantial attention due to their potential to improve the process energy efficiency. This study aims to provide extensive economic analysis and environmental impact assessment of the application of heat pumps under different conditions and scenarios. For this purpose, we first selected three important conditions: feed composition, plant capacity, and fuel price. Then, we performed a range of analyses to identify the major costs and environmental drivers. The economics and environmental impact of heat pump-assisted distillation was investigated and compared with those of conventional distillation.

Suggested Citation

  • Jisook Lee & Yongho Son & Kwang Soon Lee & Wangyun Won, 2019. "Economic Analysis and Environmental Impact Assessment of Heat Pump-Assisted Distillation in a Gas Fractionation Unit," Energies, MDPI, vol. 12(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:852-:d:210978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/852/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/852/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Seulki & Won, Wangyun & Kim, Jiyong, 2017. "Scenario-based approach for design and comparatively analysis of conventional and renewable energy systems," Energy, Elsevier, vol. 129(C), pages 86-100.
    2. Won, Wangyun & Kwon, Hweeung & Han, Jee-Hoon & Kim, Jiyong, 2017. "Design and operation of renewable energy sources based hydrogen supply system: Technology integration and optimization," Renewable Energy, Elsevier, vol. 103(C), pages 226-238.
    3. Kwon, Sunghoon & Won, Wangyun & Kim, Jiyong, 2016. "A superstructure model of an isolated power supply system using renewable energy: Development and application to Jeju Island, Korea," Renewable Energy, Elsevier, vol. 97(C), pages 177-188.
    4. Leistritz, F. Larry & Hodur, Nancy M. & Senechal, Donald M. & Stowers, Mark D. & McCalla, Darold & Saffron, Chris M., 2007. "Biorefineries Using Agricultural Residue Feedstock In The Great Plains," Staff Papers 7323, North Dakota State University, Department of Agribusiness and Applied Economics.
    5. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    6. Leistritz, F. Larry & Hodur, Nancy M. & Senechal, Donald M. & Stowers, Mark D. & McCalla, Darold & Saffron, Chris M., 2007. "Biorefineries Using Agricultural Residue Feedstock In The Great Plains," Staff Papers 7323, North Dakota State University, Department of Agribusiness and Applied Economics.
    7. Won, Wangyun & Maravelias, Christos T., 2017. "Thermal fractionation and catalytic upgrading of lignocellulosic biomass to biofuels: Process synthesis and analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 357-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen Van Duc Long & Thi Hiep Han & Dong Young Lee & Sun Yong Park & Byeng Bong Hwang & Moonyong Lee, 2019. "Enhancement of a R-410A Reclamation Process Using Various Heat-Pump-Assisted Distillation Configurations," Energies, MDPI, vol. 12(19), pages 1-11, October.
    2. Kim, H. & Baek, S. & Won, W., 2022. "Integrative technical, economic, and environmental sustainability analysis for the development process of biomass-derived 2,5-furandicarboxylic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Kim, Hyunwoo & Lee, Shinje & Won, Wangyun, 2021. "System-level analyses for the production of 1,6-hexanediol from cellulose," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lambert, D.M. & Wilcox, M. & English, A. & Stewart, L., 2008. "Ethanol Plant Location Determinants and County Comparative Advantage," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 117-135, April.
    2. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    3. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    4. Yi Zhang & Hexu Sun & Yingjun Guo, 2020. "Integration Design and Operation Strategy of Multi-Energy Hybrid System Including Renewable Energies, Batteries and Hydrogen," Energies, MDPI, vol. 13(20), pages 1-25, October.
    5. Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Marek Jaszczur, 2023. "A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    6. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    7. Choe, Bomin & Lee, Shinje & Won, Wangyun, 2020. "Process integration and optimization for economical production of commodity chemicals from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 162(C), pages 242-248.
    8. Kang, Lixia & Liu, Yongzhong, 2015. "Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control," Applied Energy, Elsevier, vol. 154(C), pages 696-708.
    9. Kim, H. & Baek, S. & Won, W., 2022. "Integrative technical, economic, and environmental sustainability analysis for the development process of biomass-derived 2,5-furandicarboxylic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    11. Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
    12. Deng, B.C. & Yang, S.Q. & Xie, X.J. & Wang, Y.L. & Pan, W. & Li, Q. & Gong, L.H., 2019. "Thermal performance assessment of cryogenic transfer line with support and multilayer insulation for cryogenic fluid," Applied Energy, Elsevier, vol. 250(C), pages 895-903.
    13. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.
    14. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    15. Zhang, Yi & Sun, Hexu & Tan, Jianxin & Li, Zheng & Hou, Weimin & Guo, Yingjun, 2022. "Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery," Energy, Elsevier, vol. 252(C).
    16. Cho, Seolhee & Kim, Jiyong, 2019. "Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops," Energy, Elsevier, vol. 185(C), pages 527-540.
    17. Mendoza-Vizcaino, Javier & Raza, Muhammad & Sumper, Andreas & Díaz-González, Francisco & Galceran-Arellano, Samuel, 2019. "Integral approach to energy planning and electric grid assessment in a renewable energy technology integration for a 50/50 target applied to a small island," Applied Energy, Elsevier, vol. 233, pages 524-543.
    18. Soiket, Md.I.H. & Oni, A.O. & Kumar, A., 2019. "The development of a process simulation model for energy consumption and greenhouse gas emissions of a vapor solvent-based oil sands extraction and recovery process," Energy, Elsevier, vol. 173(C), pages 799-808.
    19. Ruuskanen, Vesa & Koponen, Joonas & Sillanpää, Teemu & Huoman, Kimmo & Kosonen, Antti & Niemelä, Markku & Ahola, Jero, 2018. "Design and implementation of a power-hardware-in-loop simulator for water electrolysis emulation," Renewable Energy, Elsevier, vol. 119(C), pages 106-115.
    20. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:852-:d:210978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.