IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222028997.html
   My bibliography  Save this article

Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market

Author

Listed:
  • Kwag, Kyuhyeong
  • Shin, Hansol
  • Oh, Hyobin
  • Yun, Sangmin
  • Kim, Tae Hyun
  • Hwang, Pyeong-Ik
  • Kim, Wook

Abstract

Many countries have introduced renewable portfolio standard (RPS) with market systems that allow transactions of renewable energy certificates (RECs) to foster investment in renewable energy (RE). The main objective of this study is to estimate long-term REC prices based on marginal-cost pricing and analyze the RPS system quantitatively. In the proposed method, a mathematical model is constructed as bilevel programming that considers the REC and electricity markets simultaneously, and the KKT conditions are used to solve the nonlinearity of the constructed model. The proposed method has the following advantages: (1) it determines the optimal capacity of RE to implement the RPS system, (2) it derives the long-term marginal cost of the REC market, and (3) it can be used to perform quantitative analyses of the RPS system. Simulation studies were performed in South Korea, and the results indicated that solar photovoltaic accounted for a major portion of the new investment. The marginal cost of the REC market and the impact of the RPS systems on retail electricity prices are estimated to be USD 14.01/REC and USD 4.59/MWh in 2031, respectively (in 2021 USD). Our study provides appropriate price signals to the market participants and serves as a reference for policymakers.

Suggested Citation

  • Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028997
    DOI: 10.1016/j.energy.2022.126013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Seulki & Won, Wangyun & Kim, Jiyong, 2017. "Scenario-based approach for design and comparatively analysis of conventional and renewable energy systems," Energy, Elsevier, vol. 129(C), pages 86-100.
    2. Chen, Yiyang & Mamon, Rogemar & Spagnolo, Fabio & Spagnolo, Nicola, 2022. "Renewable energy and economic growth: A Markov-switching approach," Energy, Elsevier, vol. 244(PB).
    3. Chen, Cliff & Wiser, Ryan & Mills, Andrew & Bolinger, Mark, 2009. "Weighing the costs and benefits of state renewables portfolio standards in the United States: A comparative analysis of state-level policy impact projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 552-566, April.
    4. Bae, Jeong Hwan & Rishi, Meenakshi & Li, Dmitriy, 2021. "Consumer preferences for a green certificate program in South Korea," Energy, Elsevier, vol. 230(C).
    5. Berry, Trent & Jaccard, Mark, 2001. "The renewable portfolio standard:: design considerations and an implementation survey," Energy Policy, Elsevier, vol. 29(4), pages 263-277, March.
    6. Malik, Arif S. & Al-Zubeidi, Salem, 2006. "Electricity tariffs based on long-run marginal costs for central grid system of Oman," Energy, Elsevier, vol. 31(12), pages 1703-1714.
    7. Francisco Munoz & Enzo Sauma & Benjamin Hobbs, 2013. "Approximations in power transmission planning: implications for the cost and performance of renewable portfolio standards," Journal of Regulatory Economics, Springer, vol. 43(3), pages 305-338, June.
    8. Fan, Jing-Li & Wang, Jia-Xing & Hu, Jia-Wei & Yang, Yang & Wang, Yu, 2021. "Will China achieve its renewable portfolio standard targets? An analysis from the perspective of supply and demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Choi, Dong Gu & Park, Sang Yong & Hong, Jong Chul, 2015. "Quantitatively exploring the future of renewable portfolio standard in the Korean electricity sector via a bottom-up energy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 793-803.
    11. Elsido, Cristina & Bischi, Aldo & Silva, Paolo & Martelli, Emanuele, 2017. "Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units," Energy, Elsevier, vol. 121(C), pages 403-426.
    12. Woodman, B. & Mitchell, C., 2011. "Learning from experience? The development of the Renewables Obligation in England and Wales 2002-2010," Energy Policy, Elsevier, vol. 39(7), pages 3914-3921, July.
    13. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Operational scheduling of electric vehicles parking lot integrated with renewable generation based on bilevel programming approach," Energy, Elsevier, vol. 139(C), pages 422-432.
    14. Kwon, Tae-hyeong, 2015. "Rent and rent-seeking in renewable energy support policies: Feed-in tariff vs. renewable portfolio standard," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 676-681.
    15. Xin-gang, Zhao & Tian-tian, Feng & Lu, Cui & Xia, Feng, 2014. "The barriers and institutional arrangements of the implementation of renewable portfolio standard: A perspective of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 371-380.
    16. Morthorst, P. E., 2000. "The development of a green certificate market," Energy Policy, Elsevier, vol. 28(15), pages 1085-1094, December.
    17. Kim, Jung Eun & Tang, Tian, 2020. "Preventing early lock-in with technology-specific policy designs: The Renewable Portfolio Standards and diversity in renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    18. Nishio, Kenichiro & Asano, Hiroshi, 2006. "Supply amount and marginal price of renewable electricity under the renewables portfolio standard in Japan," Energy Policy, Elsevier, vol. 34(15), pages 2373-2387, October.
    19. Ahmad, Salman & Tahar, Razman Mat & Muhammad-Sukki, Firdaus & Munir, Abu Bakar & Rahim, Ruzairi Abdul, 2015. "Role of feed-in tariff policy in promoting solar photovoltaic investments in Malaysia: A system dynamics approach," Energy, Elsevier, vol. 84(C), pages 808-815.
    20. Shrimali, Gireesh & Tirumalachetty, Sumala, 2013. "Renewable energy certificate markets in India—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 702-716.
    21. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    22. Gupta, Sandeep Kumar & Purohit, Pallav, 2013. "Renewable energy certificate mechanism in India: A preliminary assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 380-392.
    23. RUIZ, Carlos & CONEJO, Antonio J. & SMEERS, Yves, 2012. "Equilibria in an oligopolistic electricity pool with stepwise offer curves," LIDAM Reprints CORE 2395, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    24. Novacheck, Joshua & Johnson, Jeremiah X., 2015. "The environmental and cost implications of solar energy preferences in Renewable Portfolio Standards," Energy Policy, Elsevier, vol. 86(C), pages 250-261.
    25. Zhang, Libo & Chen, Changqi & Wang, Qunwei & Zhou, Dequn, 2021. "The impact of feed-in tariff reduction and renewable portfolio standard on the development of distributed photovoltaic generation in China," Energy, Elsevier, vol. 232(C).
    26. Rouhani, Omid M. & Niemeier, Debbie & Gao, H. Oliver & Bel, Germà, 2016. "Cost-benefit analysis of various California renewable portfolio standard targets: Is a 33% RPS optimal?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1122-1132.
    27. Sovacool, Benjamin K., 2010. "A comparative analysis of renewable electricity support mechanisms for Southeast Asia," Energy, Elsevier, vol. 35(4), pages 1779-1793.
    28. Barbose, Galen & Bird, Lori & Heeter, Jenny & Flores-Espino, Francisco & Wiser, Ryan, 2015. "Costs and benefits of renewables portfolio standards in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 523-533.
    29. Dong, Changgui & Zhou, Runmin & Li, Jiaying, 2021. "Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China," Applied Energy, Elsevier, vol. 281(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinke & Liu, Guy & Shao, Jing, 2020. "Understanding the ROC transfer payment in the renewable obligation with the recycling mechanism in the United Kingdom," Energy Economics, Elsevier, vol. 87(C).
    2. Choi, Gobong & Huh, Sung-Yoon & Heo, Eunnyeong & Lee, Chul-Yong, 2018. "Prices versus quantities: Comparing economic efficiency of feed-in tariff and renewable portfolio standard in promoting renewable electricity generation," Energy Policy, Elsevier, vol. 113(C), pages 239-248.
    3. Xu, Jiuping & Yang, Guocan & Wang, Fengjuan & Shu, Kejing, 2022. "A provincial renewable portfolio standards-based distribution strategy for both power plant and user: A case study from Guangdong, China," Energy Policy, Elsevier, vol. 165(C).
    4. Bangjun, Wang & Feng, Zhaolei & Feng, Ji & Yu, Pan & Cui, Linyu, 2022. "Decision making on investments in photovoltaic power generation projects based on renewable portfolio standard: Perspective of real option," Renewable Energy, Elsevier, vol. 189(C), pages 1033-1045.
    5. Yang Tang & Yifeng Liu & Weiqiang Huo & Meng Chen & Shilong Ye & Lei Cheng, 2023. "Optimal Allocation Scheme of Renewable Energy Consumption Responsibility Weight under Renewable Portfolio Standards: An Integrated Evolutionary Game and Stochastic Optimization Approach," Energies, MDPI, vol. 16(7), pages 1-22, March.
    6. Xin-gang, Zhao & Ling-zhi, Ren & Yu-zhuo, Zhang & Guan, Wan, 2018. "Evolutionary game analysis on the behavior strategies of power producers in renewable portfolio standard," Energy, Elsevier, vol. 162(C), pages 505-516.
    7. Kim, Jung Eun & Tang, Tian, 2020. "Preventing early lock-in with technology-specific policy designs: The Renewable Portfolio Standards and diversity in renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    8. Rountree, Valerie, 2019. "Nevada's experience with the Renewable Portfolio Standard," Energy Policy, Elsevier, vol. 129(C), pages 279-291.
    9. Teng, Minmin & Lv, Kunfeng & Han, Chuanfeng & Liu, Pihui, 2023. "Trading behavior strategy of power plants and the grid under renewable portfolio standards in China: A tripartite evolutionary game analysis," Energy, Elsevier, vol. 284(C).
    10. Choi, Dong Gu & Park, Sang Yong & Hong, Jong Chul, 2015. "Quantitatively exploring the future of renewable portfolio standard in the Korean electricity sector via a bottom-up energy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 793-803.
    11. Schallenberg-Rodriguez, Julieta, 2017. "Renewable electricity support systems: Are feed-in systems taking the lead?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1422-1439.
    12. Shrestha, Anil & Kakinaka, Makoto, 2023. "Nexus between renewable energy certificates and electricity prices in India: Evidence from wavelet coherence analysis," Renewable Energy, Elsevier, vol. 204(C), pages 836-847.
    13. Shao, Jing & Chen, Huanhuan & Li, Jinke & Liu, Guy, 2022. "An evaluation of the consumer-funded renewable obligation scheme in the UK for wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Fan, Jing-Li & Wang, Jia-Xing & Hu, Jia-Wei & Yang, Yang & Wang, Yu, 2021. "Will China achieve its renewable portfolio standard targets? An analysis from the perspective of supply and demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Pérez de Arce, Miguel & Sauma, Enzo & Contreras, Javier, 2016. "Renewable energy policy performance in reducing CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 272-280.
    16. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    17. Amrutha, A.A. & Balachandra, P. & Mathirajan, M., 2017. "Role of targeted policies in mainstreaming renewable energy in a resource constrained electricity system: A case study of Karnataka electricity system in India," Energy Policy, Elsevier, vol. 106(C), pages 48-58.
    18. Xin-gang, Zhao & Lei, Xu & Ying, Zhou, 2022. "How to promote the effective implementation of China’s Renewable Portfolio Standards considering non-neutral technology?," Energy, Elsevier, vol. 238(PB).
    19. Miguel Pérez de Arce and Enzo Sauma, 2016. "Comparison of Incentive Policies for Renewable Energy in an Oligopolistic Market with Price-Responsive Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.