IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p574-d205281.html
   My bibliography  Save this article

Methodology for the Energy Need Assessment to Effectively Design and Deploy Mini-Grids for Rural Electrification

Author

Listed:
  • Valeria Gambino

    (DIEF, Department of Industrial Engineering, University of Florence, 50139 Florence, Italy)

  • Riccardo Del Citto

    (DIMA, Department of Mechanical and Aerospace Engineering, University of Rome La Sapienza, 00162 Roma, Italy)

  • Paolo Cherubini

    (DESTEC, Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56126 Pisa, Italy)

  • Carlo Tacconelli

    (DIMA, Department of Mechanical and Aerospace Engineering, University of Rome La Sapienza, 00162 Roma, Italy)

  • Andrea Micangeli

    (DIMA, Department of Mechanical and Aerospace Engineering, University of Rome La Sapienza, 00162 Roma, Italy)

  • Romano Giglioli

    (DESTEC, Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, 56126 Pisa, Italy)

Abstract

In order to successfully deploy a large number of decentralized energy systems in developing countries, it is necessary to standardize effective methodologies and procedures to develop off-grid/mini-grid systems. Considering that the energy need assessment provides inputs and assumptions used in business modelling and mini-grid design, the accuracy of its results directly affects the technical and financial feasibility studies. Thus, the approach for applying a proven methodology for the energy need assessment of rural communities is aimed at obtaining reliable input data for the mini-grid development. This helps in reducing both the financial challenges by mitigating the uncertainties in electricity demand and the technical challenges by contributing to adequately size off-grid power generation systems, with a view to boost toward a common overall objective of mini-grid’s optimization methods and tools. Hence, taking into consideration that target communities differ in terms of needs and context conditions, the proposed paper describes an inclusive methodology that can be adapted case-by-case. It provides an effective applied solution the lack of proven guidelines from project developers or literature, giving priority to data collection methods able to achieve a large sample representative of the market, with high accuracy in estimating the energy consumptions from electricity substitutes.

Suggested Citation

  • Valeria Gambino & Riccardo Del Citto & Paolo Cherubini & Carlo Tacconelli & Andrea Micangeli & Romano Giglioli, 2019. "Methodology for the Energy Need Assessment to Effectively Design and Deploy Mini-Grids for Rural Electrification," Energies, MDPI, vol. 12(3), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:574-:d:205281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cust, J. & Singh, A. & Neuhoff, K., 2007. "Rural Electrification in India: Economic and Institutional aspects of Renewables," Cambridge Working Papers in Economics 0763, Faculty of Economics, University of Cambridge.
    2. United Nations, 2016. "The Sustainable Development Goals 2016," Working Papers id:11456, eSocialSciences.
    3. Grosh, M.E. & Glewwe, P., 1995. "A Guide to Living Standards Measurement Study Surveys and their Data Sets," Papers 120, World Bank - Living Standards Measurement.
    4. Alzola, J.A. & Vechiu, I. & Camblong, H. & Santos, M. & Sall, M. & Sow, G., 2009. "Microgrids project, Part 2: Design of an electrification kit with high content of renewable energy sources in Senegal," Renewable Energy, Elsevier, vol. 34(10), pages 2151-2159.
    5. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
    6. Williams, Nathaniel J. & Jaramillo, Paulina & Taneja, Jay & Ustun, Taha Selim, 2015. "Enabling private sector investment in microgrid-based rural electrification in developing countries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1268-1281.
    7. Philip Sandwell & Clementine Chambon & Amit Saraogi & Apolline Chabenat & Marek Mazur & Ned Ekins-Daukes & Jenny Nelson, 2016. "Analysis of energy access and impact of modern energy sources in unelectrified villages in Uttar Pradesh," Post-Print hal-02376406, HAL.
    8. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    9. Louw, Kate & Conradie, Beatrice & Howells, Mark & Dekenah, Marcus, 2008. "Determinants of electricity demand for newly electrified low-income African households," Energy Policy, Elsevier, vol. 36(8), pages 2814-2820, August.
    10. Camblong, H. & Sarr, J. & Niang, A.T. & Curea, O. & Alzola, J.A. & Sylla, E.H. & Santos, M., 2009. "Micro-grids project, Part 1: Analysis of rural electrification with high content of renewable energy sources in Senegal," Renewable Energy, Elsevier, vol. 34(10), pages 2141-2150.
    11. Kyran O'Sullivan & Douglas F. Barnes, 2007. "Energy Policies and Multitopic Household Surveys : Guidelines for Questionnaire Design in Living Standards Measurement Studies," World Bank Publications - Books, The World Bank Group, number 6615, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dahiana López García & José David Beltrán Gallego & Sandra Ximena Carvajal Quintero, 2023. "Proposing Dynamic Pricing as an Alternative to Improve Technical and Economic Conditions in Rural Electrification: A Case Study from Colombia," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    2. Nigel Scott & William Coley, 2021. "Understanding Load Profiles of Mini-Grid Customers in Tanzania," Energies, MDPI, vol. 14(14), pages 1-17, July.
    3. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    4. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    5. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    6. Andrea Micangeli & Davide Fioriti & Paolo Cherubini & Pablo Duenas-Martinez, 2020. "Optimal Design of Isolated Mini-Grids with Deterministic Methods: Matching Predictive Operating Strategies with Low Computational Requirements," Energies, MDPI, vol. 13(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almeshqab, Fatema & Ustun, Taha Selim, 2019. "Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 35-53.
    2. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    3. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    4. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    5. Holstenkamp, Lars, 2019. "What do we know about cooperative sustainable electrification in the global South? A synthesis of the literature and refined social-ecological systems framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 307-320.
    6. Fioriti, Davide & Pintus, Salvatore & Lutzemberger, Giovanni & Poli, Davide, 2020. "Economic multi-objective approach to design off-grid microgrids: A support for business decision making," Renewable Energy, Elsevier, vol. 159(C), pages 693-704.
    7. Abada, Ibrahim & Othmani, Mehdi & Tatry, Léa, 2021. "An innovative approach for the optimal sizing of mini-grids in rural areas integrating the demand, the supply, and the grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Dada, Joseph O., 2014. "Towards understanding the benefits and challenges of Smart/Micro-Grid for electricity supply system in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1003-1014.
    9. Thiam, Djiby-Racine, 2010. "Renewable decentralized in developing countries: Appraisal from microgrids project in Senegal," Renewable Energy, Elsevier, vol. 35(8), pages 1615-1623.
    10. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2022. "Review of Latest Advances and Prospects of Energy Storage Systems: Considering Economic, Reliability, Sizing, and Environmental Impacts Approach," Clean Technol., MDPI, vol. 4(2), pages 1-25, June.
    11. Domenech, B. & Ferrer-Martí, L. & Pastor, R., 2015. "Including management and security of supply constraints for designing stand-alone electrification systems in developing countries," Renewable Energy, Elsevier, vol. 80(C), pages 359-369.
    12. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    13. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    14. Sachiko Graber & Tara Narayanan & Jose F. Alfaro & Debajit Palit, 2019. "Perceptions towards solar mini‐grid systems in India: A multi‐stakeholder analysis," Natural Resources Forum, Blackwell Publishing, vol. 43(4), pages 253-266, November.
    15. Diouf, Boucar & Miezan, Ekra, 2021. "The limits of the concession-led model in rural electrification policy: The case study of Senegal," Renewable Energy, Elsevier, vol. 177(C), pages 626-635.
    16. Gómez-Hernández, D.F. & Domenech, B. & Moreira, J. & Farrera, N. & López-González, A. & Ferrer-Martí, L., 2019. "Comparative evaluation of rural electrification project plans: A case study in Mexico," Energy Policy, Elsevier, vol. 129(C), pages 23-33.
    17. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    18. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    19. Lee, Mitchell & Soto, Daniel & Modi, Vijay, 2014. "Cost versus reliability sizing strategy for isolated photovoltaic micro-grids in the developing world," Renewable Energy, Elsevier, vol. 69(C), pages 16-24.
    20. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:574-:d:205281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.