IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p395-d201134.html
   My bibliography  Save this article

Maximizing the Economic Benefits of a Grid-Tied Microgrid Using Solar-Wind Complementarity

Author

Listed:
  • Aqsa Naeem

    (Electrical Engineering Department, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan)

  • Naveed Ul Hassan

    (Electrical Engineering Department, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan)

  • Chau Yuen

    (Engineering Product Development, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore)

  • S. M. Muyeen

    (Department of Electrical and Computer Engineering, Curtin University, Perth, WA 6845, Australia)

Abstract

The increasing use of intermittent, renewable energy sources (RESs) for electricity generation in microgrids (MGs) requires efficient strategies for reliable and economic operation. Complementarity between RESs provides good prospects for integrating several local energy sources and reducing the costs of MG setup and operations. This paper presents a framework for maximizing the economic benefits of a grid-tied MG by exploiting the spatial and temporal complementarity between solar and wind energies (solar-wind complementarity). The proposed framework considers the cost of energy production from different RESs and the cost of bi-directional energy exchange with the main grid. For a given RES mix, a minimum system power loss (SPL) threshold can also be determined. However, at this SPL threshold, MG energy exchange cost is not always minimized. The framework determines the optimized SPL value (above the threshold) at which MG energy exchange cost gets minimized. Through this framework, MG operator can decide appropriate RES mix and can achieve various tradeoffs according to the energy production cost, solar-wind complementarity of the site and its required economic objectives.

Suggested Citation

  • Aqsa Naeem & Naveed Ul Hassan & Chau Yuen & S. M. Muyeen, 2019. "Maximizing the Economic Benefits of a Grid-Tied Microgrid Using Solar-Wind Complementarity," Energies, MDPI, vol. 12(3), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:395-:d:201134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu, 2014. "Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid," Energies, MDPI, vol. 7(12), pages 1-19, December.
    2. Muhammad Yousif & Qian Ai & Yang Gao & Waqas Ahmad Wattoo & Ziqing Jiang & Ran Hao, 2018. "Application of Particle Swarm Optimization to a Scheduling Strategy for Microgrids Coupled with Natural Gas Networks," Energies, MDPI, vol. 11(12), pages 1-16, December.
    3. Rongxiang Yuan & Timing Li & Xiangtian Deng & Jun Ye, 2016. "Optimal Day-Ahead Scheduling of a Smart Distribution Grid Considering Reactive Power Capability of Distributed Generation," Energies, MDPI, vol. 9(5), pages 1-17, April.
    4. Hui Hou & Mengya Xue & Yan Xu & Jinrui Tang & Guorong Zhu & Peng Liu & Tao Xu, 2018. "Multiobjective Joint Economic Dispatching of a Microgrid with Multiple Distributed Generation," Energies, MDPI, vol. 11(12), pages 1-19, November.
    5. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Impact of the Complementarity between Variable Generation Resources and Load on the Flexibility of the Korean Power System," Energies, MDPI, vol. 10(11), pages 1-13, October.
    6. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    7. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    8. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    9. Xinshuo Zhang & Guangwen Ma & Weibin Huang & Shijun Chen & Shuai Zhang, 2018. "Short-Term Optimal Operation of a Wind-PV-Hydro Complementary Installation: Yalong River, Sichuan Province, China," Energies, MDPI, vol. 11(4), pages 1-19, April.
    10. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    11. Alfonso Risso & Alexandre Beluco & Rita De Cássia Marques Alves, 2018. "Complementarity Roses Evaluating Spatial Complementarity in Time between Energy Resources," Energies, MDPI, vol. 11(7), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Siavash Karimi Madahi & Andrija T. Sarić, 2020. "Multi-Criteria Optimal Sizing and Allocation of Renewable and Non-Renewable Distributed Generation Resources at 63 kV/20 kV Substations," Energies, MDPI, vol. 13(20), pages 1-22, October.
    2. Jani, Hardik K. & Kachhwaha, Surendra Singh & Nagababu, Garlapati & Das, Alok, 2022. "Temporal and spatial simultaneity assessment of wind-solar energy resources in India by statistical analysis and machine learning clustering approach," Energy, Elsevier, vol. 248(C).
    3. Seyfettin Vadi & Sanjeevikumar Padmanaban & Ramazan Bayindir & Frede Blaabjerg & Lucian Mihet-Popa, 2019. "A Review on Optimization and Control Methods Used to Provide Transient Stability in Microgrids," Energies, MDPI, vol. 12(18), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    2. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
    3. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    4. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    5. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    6. Lowitzsch, J. & Hoicka, C.E. & van Tulder, F.J., 2020. "Renewable energy communities under the 2019 European Clean Energy Package – Governance model for the energy clusters of the future?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    7. Monforti, F. & Gaetani, M. & Vignati, E., 2016. "How synchronous is wind energy production among European countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1622-1638.
    8. Li, He & Liu, Pan & Guo, Shenglian & Ming, Bo & Cheng, Lei & Yang, Zhikai, 2019. "Long-term complementary operation of a large-scale hydro-photovoltaic hybrid power plant using explicit stochastic optimization," Applied Energy, Elsevier, vol. 238(C), pages 863-875.
    9. Han, Shuang & Zhang, Lu-na & Liu, Yong-qian & Zhang, Hao & Yan, Jie & Li, Li & Lei, Xiao-hui & Wang, Xu, 2019. "Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio," Applied Energy, Elsevier, vol. 236(C), pages 973-984.
    10. Mohammadi, Kasra & Goudarzi, Navid, 2018. "Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California," Renewable Energy, Elsevier, vol. 120(C), pages 190-200.
    11. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
    12. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    13. Rafael Peña Gallardo & Adalberto Ospino Castro & Aurelio Medina Ríos, 2020. "An Image Processing-Based Method to Assess the Monthly Energetic Complementarity of Solar and Wind Energy in Colombia," Energies, MDPI, vol. 13(5), pages 1-17, February.
    14. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    15. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    16. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    17. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    18. Jurasz, Jakub & Ciapała, Bartłomiej, 2017. "Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird," Applied Energy, Elsevier, vol. 198(C), pages 21-35.
    19. Samson Ademola Adegoke & Yanxia Sun, 2023. "Diminishing Active Power Loss and Improving Voltage Profile Using an Improved Pathfinder Algorithm Based on Inertia Weight," Energies, MDPI, vol. 16(3), pages 1-14, January.
    20. Lukáš Rečka & Milan Ščasný & Dali Tsintskiladze Laxton, 2023. "The Role of Biomass in Decarbonisation Efforts: Spatially Enriched Energy System Optimisation Modelling," Energies, MDPI, vol. 16(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:395-:d:201134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.