IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1939-d159981.html
   My bibliography  Save this article

A Practical Formulation for Ex-Ante Scheduling of Energy and Reserve in Renewable-Dominated Power Systems: Case Study of the Iberian Peninsula

Author

Listed:
  • Miguel Carrión

    (Department of Electrical Engineering, University of Castilla—La Mancha, 45071 Toledo, Spain)

  • Rafael Zárate-Miñano

    (Department of Electrical Engineering, University of Castilla—La Mancha, 13400 Almadén, Spain)

  • Ruth Domínguez

    (Department of Electrical Engineering, University of Castilla—La Mancha, 45071 Toledo, Spain)

Abstract

Scheduling energy and reserve in power systems with a large number of intermittent units is a challenging problem. Traditionally, the reserve requirements are assigned after clearing the day-ahead energy market using ad hoc rules or solving computationally intense mathematical programming problems to co-optimize energy and reserve. While the former approach often leads to costly oversized reserve provisions, the computational time required by the latter makes it generally incompatible with the daily power system operational practices. This paper proposes an alternative deterministic formulation for computing the energy and reserve scheduling, considering the uncertainty of the demand and the intermittent power production in such a way that the resulting problem requires a lower number of constraints and variables than stochastic programming-based formulations. The performance of the proposed formulation has been compared with respect to two standard stochastic programming formulations in a small-size power system. Finally, a realistic case study based on the Iberian Peninsula power system has been solved and discussed.

Suggested Citation

  • Miguel Carrión & Rafael Zárate-Miñano & Ruth Domínguez, 2018. "A Practical Formulation for Ex-Ante Scheduling of Energy and Reserve in Renewable-Dominated Power Systems: Case Study of the Iberian Peninsula," Energies, MDPI, vol. 11(8), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1939-:d:159981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoffrey Pritchard & Golbon Zakeri & Andrew Philpott, 2010. "A Single-Settlement, Energy-Only Electric Power Market for Unpredictable and Intermittent Participants," Operations Research, INFORMS, vol. 58(4-part-2), pages 1210-1219, August.
    2. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    3. Domínguez, R. & Conejo, A.J. & Carrión, M., 2014. "Operation of a fully renewable electric energy system with CSP plants," Applied Energy, Elsevier, vol. 119(C), pages 417-430.
    4. Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Stochastic Unit Commitment Based on Multi-Scenario Tree Method Considering Uncertainty," Energies, MDPI, vol. 11(4), pages 1-17, March.
    5. Ilias G. Marneris & Pandelis N. Biskas & Anastasios G. Bakirtzis, 2017. "Stochastic and Deterministic Unit Commitment Considering Uncertainty and Variability Reserves for High Renewable Integration," Energies, MDPI, vol. 10(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Alvarado-Barrios & A. Rodríguez del Nozal & A. Tapia & J. L. Martínez-Ramos & D. G. Reina, 2019. "An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes," Energies, MDPI, vol. 12(11), pages 1-23, June.
    2. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    3. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    4. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
    5. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    6. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    7. Miguel López & Carlos Sans & Sergio Valero & Carolina Senabre, 2018. "Empirical Comparison of Neural Network and Auto-Regressive Models in Short-Term Load Forecasting," Energies, MDPI, vol. 11(8), pages 1-19, August.
    8. Mena, R. & Escobar, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D., 2019. "The impact of concentrated solar power in electric power systems: A Chilean case study," Applied Energy, Elsevier, vol. 235(C), pages 258-283.
    9. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    10. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    11. Sarfati, Mahir & Hesamzadeh, Mohammad Reza & Biggar, Darryl R. & Baldick, Ross, 2018. "Probabilistic pricing of ramp service in power systems with wind and solar generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 851-862.
    12. repec:qut:auncer:wp103 is not listed on IDEAS
    13. Morales, Juan M. & Pineda, Salvador, 2017. "On the inefficiency of the merit order in forward electricity markets with uncertain supply," European Journal of Operational Research, Elsevier, vol. 261(2), pages 789-799.
    14. Brabec, Marek & Konár, Ondrej & Pelikán, Emil & Malý, Marek, 2008. "A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers," International Journal of Forecasting, Elsevier, vol. 24(4), pages 659-678.
    15. Masoud Agabalaye-Rahvar & Amin Mansour-Saatloo & Mohammad Amin Mirzaei & Behnam Mohammadi-Ivatloo & Kazem Zare & Amjad Anvari-Moghaddam, 2020. "Robust Optimal Operation Strategy for a Hybrid Energy System Based on Gas-Fired Unit, Power-to-Gas Facility and Wind Power in Energy Markets," Energies, MDPI, vol. 13(22), pages 1-21, November.
    16. Qi Wang & Ping Chang & Runqing Bai & Wenfei Liu & Jianfeng Dai & Yi Tang, 2019. "Mitigation Strategy for Duck Curve in High Photovoltaic Penetration Power System Using Concentrating Solar Power Station," Energies, MDPI, vol. 12(18), pages 1-16, September.
    17. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    18. Xin Shi & Alberto J. Lamadrid L. & Luis F. Zuluaga, 2021. "Revenue Adequate Prices for Chance-Constrained Electricity Markets with Variable Renewable Energy Sources," Papers 2105.01233, arXiv.org.
    19. Carlos Barros & Luis Gil-Alana, 2013. "Inflation Forecasting in Angola: A Fractional Approach," African Development Review, African Development Bank, vol. 25(1), pages 91-104.
    20. Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
    21. Ziel, Florian & Steinert, Rick & Husmann, Sven, 2015. "Efficient modeling and forecasting of electricity spot prices," Energy Economics, Elsevier, vol. 47(C), pages 98-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1939-:d:159981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.