IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1588-d153012.html
   My bibliography  Save this article

Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach

Author

Listed:
  • Javier Pórtoles

    (Doctorate Programme in Information Technologies and Communications, University Rey Juan Carlos, c/ Tulipán s/n, 28933 Móstoles, Spain)

  • Camino González

    (Statistical Laboratory, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain)

  • Javier M. Moguerza

    (Data Science Laboratory, University Rey Juan Carlos, c/ Tulipán s/n, 28933 Móstoles, Spain)

Abstract

Dynamic Trees are a tree-based machine learning technique specially designed for online environments where data are to be analyzed sequentially as they arrive. Our purpose is to test this methodology for the very first time for Electricity Price Forecasting (EPF) by using data from the Iberian market. For benchmarking the results, we will compare them against another tree-based technique, Random Forest, a widely used method that has proven its good results in many fields. The benchmark includes several versions of the Dynamic Trees approach for a very short term EPF (one-hour ahead) and also a short term (one-day ahead) approach but only with the best versions. The numerical results show that Dynamic Trees are an adequate method, both for very short and short term EPF—even improving upon the performance of the Random Forest method. The comparison with other studies for the Iberian market suggests that Dynamic Trees is a proper and promising method for EPF.

Suggested Citation

  • Javier Pórtoles & Camino González & Javier M. Moguerza, 2018. "Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach," Energies, MDPI, vol. 11(6), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1588-:d:153012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying-Yi Hong & Ching-Ping Wu, 2012. "Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network," Energies, MDPI, vol. 5(11), pages 1-15, November.
    2. Brancucci Martinez-Anido, Carlo & Brinkman, Greg & Hodge, Bri-Mathias, 2016. "The impact of wind power on electricity prices," Renewable Energy, Elsevier, vol. 94(C), pages 474-487.
    3. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Technology.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
    6. Taddy, Matthew A. & Gramacy, Robert B. & Polson, Nicholas G., 2011. "Dynamic Trees for Learning and Design," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 109-123.
    7. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    8. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    9. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, September.
    10. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Plakas & Ioannis Karampinis & Panayiotis Alefragis & Alexios Birbas & Michael Birbas & Alex Papalexopoulos, 2023. "A Predictive Fuzzy Logic Model for Forecasting Electricity Day-Ahead Market Prices for Scheduling Industrial Applications," Energies, MDPI, vol. 16(10), pages 1-21, May.
    2. Yuehjen E. Shao & Yi-Shan Tsai, 2018. "Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables," Energies, MDPI, vol. 11(7), pages 1-22, July.
    3. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & Jesus Lopez-Sotelo & David Celeita, 2023. "An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture," Energies, MDPI, vol. 16(19), pages 1-24, September.
    4. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Diego Aineto & Javier Iranzo-Sánchez & Lenin G. Lemus-Zúñiga & Eva Onaindia & Javier F. Urchueguía, 2019. "On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market," Energies, MDPI, vol. 12(11), pages 1-20, May.
    6. Bikeri Adline & Kazushi Ikeda, 2023. "A Hawkes Model Approach to Modeling Price Spikes in the Japanese Electricity Market," Energies, MDPI, vol. 16(4), pages 1-20, February.
    7. Shadi Tehrani & Jesús Juan & Eduardo Caro, 2022. "Electricity Spot Price Modeling and Forecasting in European Markets," Energies, MDPI, vol. 15(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    2. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    3. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    4. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    5. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    6. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    7. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    8. Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
    9. Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
    10. Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    13. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    14. Tim Janke & Florian Steinke, 2019. "Forecasting the Price Distribution of Continuous Intraday Electricity Trading," Energies, MDPI, vol. 12(22), pages 1-14, November.
    15. Bartosz Uniejewski & Rafał Weron, 2018. "Efficient Forecasting of Electricity Spot Prices with Expert and LASSO Models," Energies, MDPI, vol. 11(8), pages 1-26, August.
    16. Umut Ugurlu & Oktay Tas & Aycan Kaya & Ilkay Oksuz, 2018. "The Financial Effect of the Electricity Price Forecasts’ Inaccuracy on a Hydro-Based Generation Company," Energies, MDPI, vol. 11(8), pages 1-19, August.
    17. Joanna Janczura & Andrzej Puć, 2023. "ARX-GARCH Probabilistic Price Forecasts for Diversification of Trade in Electricity Markets—Variance Stabilizing Transformation and Financial Risk-Minimizing Portfolio Allocation," Energies, MDPI, vol. 16(2), pages 1-28, January.
    18. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2020. "Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 466-479.
    19. F. Cordoni, 2020. "A comparison of modern deep neural network architectures for energy spot price forecasting," Digital Finance, Springer, vol. 2(3), pages 189-210, December.
    20. Beltrán, Sergio & Castro, Alain & Irizar, Ion & Naveran, Gorka & Yeregui, Imanol, 2022. "Framework for collaborative intelligence in forecasting day-ahead electricity price," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1588-:d:153012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.