IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i4p959-d141583.html
   My bibliography  Save this article

Collaborative Optimal Pricing and Day-Ahead and Intra-Day Integrative Dispatch of the Active Distribution Network with Multi-Type Active Loads

Author

Listed:
  • Chong Chen

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xuan Zhou

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xiaowei Yang

    (Power Dispatching Control Center of Guangxi Power Grid, Nanning 530023, China)

  • Zhiheng He

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zhuo Li

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zhengtian Li

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Xiangning Lin

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Ting Wen

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yixin Zhuo

    (Power Dispatching Control Center of Guangxi Power Grid, Nanning 530023, China)

  • Ning Tong

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

In order to better handle the new features that emerge at both ends of supply and demand, new measures are constantly being introduced, such as demand-side management (DSM) and prediction of uncertain output and load. However, the existing DSM strategies, like real-time price (RTP), and dispatch methods are optimized separately, and response models of active loads, such as the interruptible load (IL), are still imperfect, which make it difficult for the active distribution network (ADN) to achieve global optimal operation. Therefore, to better manage active loads, the response characteristics including both the response time and the responsibility and compensation model of IL for cluster users, and the real-time demand response model for price based load, were analyzed and established. Then, a collaborative optimization strategy of RTP and optimal dispatch of ADN was proposed, which can realize an economical operation based on mutual benefit and win-win mode of supply and demand sides. Finally, the day-ahead and intra-day integrative dispatch model using different time-scale prediction data was established, which can achieve longer-term optimization while reducing the impact of prediction errors on the dispatch results. With numerical simulations, the effectiveness and superiority of the proposed strategy were verified.

Suggested Citation

  • Chong Chen & Xuan Zhou & Xiaowei Yang & Zhiheng He & Zhuo Li & Zhengtian Li & Xiangning Lin & Ting Wen & Yixin Zhuo & Ning Tong, 2018. "Collaborative Optimal Pricing and Day-Ahead and Intra-Day Integrative Dispatch of the Active Distribution Network with Multi-Type Active Loads," Energies, MDPI, vol. 11(4), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:959-:d:141583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/4/959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/4/959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vijayanarasimha Hindupur Pakka & Richard Mark Rylatt, 2016. "Design and Analysis of Electrical Distribution Networks and Balancing Markets in the UK: A New Framework with Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.
    2. Yohwan Choi & Hongseok Kim, 2016. "Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost," Energies, MDPI, vol. 9(6), pages 1-19, June.
    3. Jia Ning & Yi Tang & Qian Chen & Jianming Wang & Jianhua Zhou & Bingtuan Gao, 2017. "A Bi-Level Coordinated Optimization Strategy for Smart Appliances Considering Online Demand Response Potential," Energies, MDPI, vol. 10(4), pages 1-16, April.
    4. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    5. Hao Bai & Shihong Miao & Xiaohong Ran & Chang Ye, 2015. "Optimal Dispatch Strategy of a Virtual Power Plant Containing Battery Switch Stations in a Unified Electricity Market," Energies, MDPI, vol. 8(3), pages 1-22, March.
    6. Telaretti, E. & Graditi, G. & Ippolito, M.G. & Zizzo, G., 2016. "Economic feasibility of stationary electrochemical storages for electric bill management applications: The Italian scenario," Energy Policy, Elsevier, vol. 94(C), pages 126-137.
    7. Meng, Lexuan & Sanseverino, Eleonora Riva & Luna, Adriana & Dragicevic, Tomislav & Vasquez, Juan C. & Guerrero, Josep M., 2016. "Microgrid supervisory controllers and energy management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1263-1273.
    8. Wenpeng Yu & Dong Liu & Yuhui Huang, 2013. "Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network," Energies, MDPI, vol. 6(12), pages 1-16, December.
    9. Pengwei Cong & Wei Tang & Lu Zhang & Bo Zhang & Yongxiang Cai, 2017. "Day-Ahead Active Power Scheduling in Active Distribution Network Considering Renewable Energy Generation Forecast Errors," Energies, MDPI, vol. 10(9), pages 1-20, August.
    10. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    11. Mihai Sanduleac & Gianluca Lipari & Antonello Monti & Artemis Voulkidis & Gianluca Zanetto & Antonello Corsi & Lucian Toma & Giampaolo Fiorentino & Dumitru Federenciuc, 2017. "Next Generation Real-Time Smart Meters for ICT Based Assessment of Grid Data Inconsistencies," Energies, MDPI, vol. 10(7), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jingrui & Zhou, Yulu & Li, Zhuoyun & Cai, Junfeng, 2021. "Three-level day-ahead optimal scheduling framework considering multi-stakeholders in active distribution networks: Up-to-down approach," Energy, Elsevier, vol. 219(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byeongkwan Kang & Kyuhee Jang & Sounghoan Park & Myeong-in Choi & Sehyun Park, 2018. "Energy Storage System Control Algorithm by Operating Target Power to Improve Energy Sustainability of Smart Home," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    2. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    3. Kim, Minsoo & Park, Taeseop & Jeong, Jaeik & Kim, Hongseok, 2023. "Stochastic optimization of home energy management system using clustered quantile scenario reduction," Applied Energy, Elsevier, vol. 349(C).
    4. Jungsub Sim & Minsoo Kim & Dongjoo Kim & Hongseok Kim, 2021. "Cloud Energy Storage System Operation with Capacity P2P Transaction," Energies, MDPI, vol. 14(2), pages 1-13, January.
    5. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    6. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    7. Mohamed El-Hendawi & Hossam A. Gabbar & Gaber El-Saady & El-Nobi A. Ibrahim, 2018. "Control and EMS of a Grid-Connected Microgrid with Economical Analysis," Energies, MDPI, vol. 11(1), pages 1-20, January.
    8. Kalyani Makarand Kurundkar & Geetanjali Abhijit Vaidya, 2023. "Stochastic Security-Constrained Economic Dispatch of Load-Following and Contingency Reserves Ancillary Service Using a Grid-Connected Microgrid during Uncertainty," Energies, MDPI, vol. 16(6), pages 1-25, March.
    9. Raji Atia & Noboru Yamada, 2016. "Distributed Renewable Generation and Storage System Sizing Based on Smart Dispatch of Microgrids," Energies, MDPI, vol. 9(3), pages 1-16, March.
    10. Jingpeng Yue & Zhijian Hu & Chendan Li & Juan C. Vasquez & Josep M. Guerrero, 2017. "Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System," Energies, MDPI, vol. 10(7), pages 1-14, July.
    11. Igyso Zafeiratou & Ionela Prodan & Laurent Lefévre, 2021. "A Hierarchical Control Approach for Power Loss Minimization and Optimal Power Flow within a Meshed DC Microgrid," Energies, MDPI, vol. 14(16), pages 1-27, August.
    12. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    13. Mazhar Abbas & Eung-sang Kim & Seul-ki Kim & Yun-su Kim, 2016. "Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation," Energies, MDPI, vol. 9(10), pages 1-19, October.
    14. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu, 2014. "Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid," Energies, MDPI, vol. 7(12), pages 1-19, December.
    15. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    16. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    17. Manzano, J.M. & Salvador, J.R. & Romaine, J.B. & Alvarado-Barrios, L., 2022. "Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors," Renewable Energy, Elsevier, vol. 194(C), pages 647-658.
    18. Jean-Henry Ferrasse & Nandeeta Neerunjun & Hubert Stahn, 2021. "Managing intermittency in the electricity market," Working Papers halshs-03154612, HAL.
    19. Qingwu Gong & Jiazhi Lei & Jun Ye, 2016. "Optimal Siting and Sizing of Distributed Generators in Distribution Systems Considering Cost of Operation Risk," Energies, MDPI, vol. 9(1), pages 1-18, January.
    20. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:959-:d:141583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.