IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3071-d181280.html
   My bibliography  Save this article

Financing the Renovation of the Cypriot Building Stock: An Assessment of the Energy Saving Potential of Different Policy Scenarios Based on the Invert/EE-Lab Model

Author

Listed:
  • Marina Economidou

    (European Commission, Joint Research Centre, Directorate for Energy, Transport and Climate, Via Enrico Fermi 2749, I, 21027 Ispra, VA, Italy)

  • Paolo Zangheri

    (European Commission, Joint Research Centre, Directorate for Energy, Transport and Climate, Via Enrico Fermi 2749, I, 21027 Ispra, VA, Italy)

  • Andreas Müller

    (Energy Economics Group, Institute of Energy Systems and Electric Drives, Vienna University of Technology, Gusshausstrasse 25-29/370-3, 1040 Vienna, Austria)

  • Lukas Kranzl

    (Energy Economics Group, Institute of Energy Systems and Electric Drives, Vienna University of Technology, Gusshausstrasse 25-29/370-3, 1040 Vienna, Austria)

Abstract

Despite various government policies promoting energy efficiency in buildings over the last 15 years, Cyprus is still associated with a large untapped energy efficiency potential in this sector. The impact of different policy scenarios on future energy needs of the building sector in Cyprus is explored by first reviewing the current status of the building stock in Cyprus and existing national landscape of energy efficiency policies. Various new policies are then proposed to complement the existing framework and help exploit further the potential. Using the Invert/EE-Lab model, three policy scenarios extending to 2050 are assessed with the aim to estimate the energy efficiency potential of the Cypriot building sector and identify policy solutions to harness this potential. The energy consumed for heating, cooling, hot water, and lighting in the entire Cypriot building stock is expected to drop by up to 16% in 2050 compared to the baseline scenario. Under the most ambitious scenario, nearly 60% of the building stock in 2050 will be energy efficient, consuming less than half of the energy used by the average building stock in 2012. Taking into account the modelling results, recommendations on how to improve the financial landscape in buildings until 2050 are presented.

Suggested Citation

  • Marina Economidou & Paolo Zangheri & Andreas Müller & Lukas Kranzl, 2018. "Financing the Renovation of the Cypriot Building Stock: An Assessment of the Energy Saving Potential of Different Policy Scenarios Based on the Invert/EE-Lab Model," Energies, MDPI, vol. 11(11), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3071-:d:181280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:dui:wpaper:1320 is not listed on IDEAS
    2. Theodoros Zachariadis & Apostolos Michopoulos & Yannis Vougiouklakis & Benjamin Struss & Katerina Piripitsi & Christodoulos Ellinopoulos, 2017. "In-Depth Assessment of the Energy Efficiency Potential in Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 11(2), pages 86-112, December.
    3. Chris Bataille, Mark Jaccard, John Nyboer and Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 93-112.
    4. Kranzl, Lukas & Hummel, Marcus & Müller, Andreas & Steinbach, Jan, 2013. "Renewable heating: Perspectives and the impact of policy instruments," Energy Policy, Elsevier, vol. 59(C), pages 44-58.
    5. Wilkerson, Jordan T. & Cullenward, Danny & Davidian, Danielle & Weyant, John P., 2013. "End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors," Energy Economics, Elsevier, vol. 40(C), pages 773-784.
    6. Leonidas Mantzos & Tobias Wiesenthal & Nicoleta Anca Matei & Stephane Tchung-Ming & Mate Rozsai & Peter Russ & Antonio Soria Ramirez, 2017. "JRC-IDEES: Integrated Database of the European Energy Sector: Methodological note," JRC Research Reports JRC108244, Joint Research Centre.
    7. Ó Broin, Eoin & Mata, Érika & Göransson, Anders & Johnsson, Filip, 2013. "The effect of improved efficiency on energy savings in EU-27 buildings," Energy, Elsevier, vol. 57(C), pages 134-148.
    8. Sartori, Igor & Wachenfeldt, Bjrn Jensen & Hestnes, Anne Grete, 2009. "Energy demand in the Norwegian building stock: Scenarios on potential reduction," Energy Policy, Elsevier, vol. 37(5), pages 1614-1627, May.
    9. Heeren, Niko & Jakob, Martin & Martius, Gregor & Gross, Nadja & Wallbaum, Holger, 2013. "A component based bottom-up building stock model for comprehensive environmental impact assessment and target control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 45-56.
    10. Olonscheck, Mady & Holsten, Anne & Kropp, Jürgen P., 2011. "Heating and cooling energy demand and related emissions of the German residential building stock under climate change," Energy Policy, Elsevier, vol. 39(9), pages 4795-4806, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    2. Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    3. Handing Guo & Wanzhen Qiao & Yuehong Zheng, 2020. "Effectiveness Evaluation of Financing Platform Operation of Buildings Energy Saving Transformation Using ANP-Fuzzy in China: An Empirical Study," Sustainability, MDPI, vol. 12(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Tong & Curtis, John & Clancy, Matthew, 2023. "Modelling barriers to low-carbon technologies in energy system analysis: The example of renewable heat in Ireland," Applied Energy, Elsevier, vol. 330(PA).
    2. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Nägeli, Claudio & Jakob, Martin & Catenazzi, Giacomo & Ostermeyer, York, 2020. "Policies to decarbonize the Swiss residential building stock: An agent-based building stock modeling assessment," Energy Policy, Elsevier, vol. 146(C).
    4. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    5. Bauermann, Klaas, 2016. "German Energiewende and the heating market – Impact and limits of policy," Energy Policy, Elsevier, vol. 94(C), pages 235-246.
    6. Yang, Yuchen & Javanroodi, Kavan & Nik, Vahid M., 2021. "Climate change and energy performance of European residential building stocks – A comprehensive impact assessment using climate big data from the coordinated regional climate downscaling experiment," Applied Energy, Elsevier, vol. 298(C).
    7. Bischof, Julian & Duffy, Aidan, 2022. "Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Gouveia, João Pedro & Fortes, Patrícia & Seixas, Júlia, 2012. "Projections of energy services demand for residential buildings: Insights from a bottom-up methodology," Energy, Elsevier, vol. 47(1), pages 430-442.
    9. Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    10. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    11. Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
    12. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    13. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    14. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Analysis of the use of biomass as an energy alternative for the Portuguese textile dyeing industry," Energy, Elsevier, vol. 84(C), pages 503-508.
    15. Baer, Paul & Brown, Marilyn A. & Kim, Gyungwon, 2015. "The job generation impacts of expanding industrial cogeneration," Ecological Economics, Elsevier, vol. 110(C), pages 141-153.
    16. Shi, Qian & Lai, Xiaodong & Xie, Xin & Zuo, Jian, 2014. "Assessment of green building policies – A fuzzy impact matrix approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 203-211.
    17. Steve Pye & Christophe McGlade & Chris Bataille & Gabrial Anandarajah & Amandine Denis-Ryan & Vladimir Potashnikov, 2016. "Exploring national decarbonization pathways and global energy trade flows: a multi-scale analysis," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 92-109, June.
    18. Healey, Stephen & Jaccard, Mark, 2016. "Abundant low-cost natural gas and deep GHG emissions reductions for the United States," Energy Policy, Elsevier, vol. 98(C), pages 241-253.
    19. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Jonas Friege & Georg Holtz & Emile Chappin, 2016. "Exploring Homeowners’ Insulation Activity," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-4.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3071-:d:181280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.