IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2642-d173548.html
   My bibliography  Save this article

Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review

Author

Listed:
  • Yi Zhang

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China)

  • Guanmin Zhang

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China)

  • Aiqun Zhang

    (State Grid Shandong Integrated Energy Services Company Limited, Jinan 250021, Shandong, China)

  • Yinhan Jin

    (State Grid Liaocheng Power Supply Company, Liaocheng 252000, Shandong, China)

  • Ruirui Ru

    (State Grid Liaocheng Power Supply Company, Liaocheng 252000, Shandong, China)

  • Maocheng Tian

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China)

Abstract

Frost layer on the outdoor air heat exchanger surface in an air-source heat pump (ASHP) can decrease the system coefficient of performance (COP). Although the common defrosting and anti-frosting methods can improve the COP, the periodic defrosting not only reduces the system energy efficiency but also deteriorates the indoor environment. To solve these problems, it is necessary to clearly understand the frosting phenomenon and to achieve the system frost-free operation. This paper focused firstly on the analyses of frosting pathways and frosting maps. Followed by summarizing the characteristics of frost-free technologies. And then the performances of two types of frost-free ASHP (FFASHP) systems were reviewed, and the exergy and economic analysis of a FFASHP heating system were carried out. Finally, the existing problems related to the FFASHP technologies were proposed. Results show that the existing frosting maps need to be further improved. The FFASHP systems can not only achieve continuous frost-free operation but reduce operating cost. And the total COP of the FFASHP heating system is approximately 30–64% higher than that of the conventional ASHP system under the same frosting conditions. However, the investment cost of the FFASHP system increases, and its reliability also needs further field test in a wider frosting environment. In the future, combined with a new frosting map, the control strategy for the FFASHP system should be optimized.

Suggested Citation

  • Yi Zhang & Guanmin Zhang & Aiqun Zhang & Yinhan Jin & Ruirui Ru & Maocheng Tian, 2018. "Frosting Phenomenon and Frost-Free Technology of Outdoor Air Heat Exchanger for an Air-Source Heat Pump System in China: An Analysis and Review," Energies, MDPI, vol. 11(10), pages 1-36, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2642-:d:173548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Long, Zhang & Jiankai, Dong & Yiqiang, Jiang & Yang, Yao, 2014. "A novel defrosting method using heat energy dissipated by the compressor of an air source heat pump," Applied Energy, Elsevier, vol. 133(C), pages 101-111.
    2. Rafati Nasr, Mohammad & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "A review of frosting in air-to-air energy exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 538-554.
    3. Gustavsson, L & Karlsson, Å, 2003. "Heating detached houses in urban areas," Energy, Elsevier, vol. 28(8), pages 851-875.
    4. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    5. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    6. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    7. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    8. Sheng, Wei & Liu, Pengpeng & Dang, Chaobin & Liu, Guixin, 2017. "Review of restraint frost method on cold surface," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 806-813.
    9. Pang, S.C. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A., 2013. "Liquid absorption and solid adsorption system for household, industrial and automobile applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 836-847.
    10. Piljae Im & Xiaobing Liu & Hugh Henderson, 2018. "Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate," Energies, MDPI, vol. 11(1), pages 1-15, January.
    11. Song, Mengjie & Xu, Xiangguo & Mao, Ning & Deng, Shiming & Xu, Yingjie, 2017. "Energy transfer procession in an air source heat pump unit during defrosting," Applied Energy, Elsevier, vol. 204(C), pages 679-689.
    12. Liu, Di & Zhao, Fu-Yun & Tang, Guang-Fa, 2007. "Frosting of heat pump with heat recovery facility," Renewable Energy, Elsevier, vol. 32(7), pages 1228-1242.
    13. Wang, Fenghao & Wang, Zhihua & Zheng, Yuxin & Lin, Zhang & Hao, Pengfei & Huan, Chao & Wang, Tian, 2015. "Performance investigation of a novel frost-free air-source heat pump water heater combined with energy storage and dehumidification," Applied Energy, Elsevier, vol. 139(C), pages 212-219.
    14. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    15. Kim, Jaehong & Choi, Hwan-Jong & Kim, Kyung Chun, 2015. "A combined Dual Hot-Gas Bypass Defrosting method with accumulator heater for an air-to-air heat pump in cold region," Applied Energy, Elsevier, vol. 147(C), pages 344-352.
    16. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    17. Amer, Mohammed & Wang, Chi-Chuan, 2017. "Review of defrosting methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 53-74.
    18. Wang, S.W. & Liu, Z.Y., 2005. "A new method for preventing HP from frosting," Renewable Energy, Elsevier, vol. 30(5), pages 753-761.
    19. Li, Y.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X., 2007. "Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 32(8), pages 1361-1374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Nie, Yazhou & Deng, Mengsi & Shan, Ming & Yang, Xudong, 2023. "Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications," Energy Policy, Elsevier, vol. 179(C).
    3. Tomas Kropas & Giedrė Streckienė & Juozas Bielskus, 2021. "Experimental Investigation of Frost Formation Influence on an Air Source Heat Pump Evaporator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    4. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    2. Wang, Feng & Liang, Caihua & Zhang, Xiaosong, 2018. "Research of anti-frosting technology in refrigeration and air conditioning fields: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 707-722.
    3. Badri, Deyae & Toublanc, Cyril & Rouaud, Olivier & Havet, Michel, 2021. "Review on frosting, defrosting and frost management techniques in industrial food freezers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Liang, Jierong & Sun, Li & Li, Tingxun, 2018. "A novel defrosting method in gasoline vapor recovery application," Energy, Elsevier, vol. 163(C), pages 751-765.
    5. Rong, Xiangyang & Long, Weiguo & Jia, Jikang & Liu, Lianhua & Si, Pengfei & Shi, Lijun & Yan, Jinyue & Liu, Boran & Zhao, Mishen, 2023. "Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps," Applied Energy, Elsevier, vol. 332(C).
    6. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    7. Huan Song & Yongguang Hu & Yongzong Lu & Jizhang Wang & Qingmin Pan & Pingping Li, 2021. "A Review of Methods and Techniques for Detecting Frost on Plant Surfaces," Agriculture, MDPI, vol. 11(11), pages 1-22, November.
    8. Yang, Bowen & Dong, Jiankai & Zhang, Long & Song, Mengjie & Jiang, Yiqiang & Deng, Shiming, 2019. "Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting," Applied Energy, Elsevier, vol. 238(C), pages 303-310.
    9. Wei, Wenzhe & Ni, Long & Li, Shuyi & Wang, Wei & Yao, Yang & Xu, Laifu & Yang, Yahua, 2020. "A new frosting map of variable-frequency air source heat pump in severe cold region considering the variation of heating load," Renewable Energy, Elsevier, vol. 161(C), pages 184-199.
    10. Amer, Mohammed & Wang, Chi-Chuan, 2017. "Review of defrosting methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 53-74.
    11. Xiao, Biao & Chang, Huawei & He, Lin & Zhao, Shunan & Shu, Shuiming, 2020. "Annual performance analysis of an air source heat pump water heater using a new eco-friendly refrigerant mixture as an alternative to R134a," Renewable Energy, Elsevier, vol. 147(P1), pages 2013-2023.
    12. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    13. Konrad, Mary Elizabeth & MacDonald, Brendan D., 2023. "Cold climate air source heat pumps: Industry progress and thermodynamic analysis of market-available residential units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    15. Li, Gang & Du, Yuqing, 2018. "Performance investigation and economic benefits of new control strategies for heat pump-gas fired water heater hybrid system," Applied Energy, Elsevier, vol. 232(C), pages 101-118.
    16. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    17. Cai, Jingyong & Zhang, Feng & Ji, Jie, 2020. "Comparative analysis of solar-air dual source heat pump system with different heat source configurations," Renewable Energy, Elsevier, vol. 150(C), pages 191-203.
    18. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
    19. Haihui Tan & Xiaofeng Zhang & Li Zhang & Tangfei Tao & Guanghua Xu, 2019. "Ultrasonic Guided Wave Phased Array Focusing Technology and Its Application to Defrosting Performance Improvement of Air-Source Heat Pumps," Energies, MDPI, vol. 12(16), pages 1-18, August.
    20. Liu, Hongxun & Mauzerall, Denise L., 2020. "Costs of clean heating in China: Evidence from rural households in the Beijing-Tianjin-Hebei region," Energy Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2642-:d:173548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.