IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p825-d101844.html
   My bibliography  Save this article

Flexibility-Based Evaluation of Variable Generation Acceptability in Korean Power System

Author

Listed:
  • Chang-Gi Min

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea)

  • Mun-Kyeom Kim

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea)

Abstract

This study proposes an evaluation method for variable generation (VG) acceptability with an adequate level of power system flexibility. In this method, a risk index referred to as the ramping capability shortage expectation ( RSE ) is used to quantify flexibility. The RSE value of the current power system is selected as the adequate level of flexibility (i.e., RSE criterion). VG acceptability is represented by the VG penetration level for the RSE criterion. The proposed evaluation method was applied to the generation expansion plan in Korea for 2029 in order to examine the validity of the existing plan for VG penetration. Sensitivity analysis was also performed to analyze the effects of changes in system uncertainty on VG acceptability. The results show that the planned VG penetration level for 2029 can improve by approximately 12% while securing flexibility.

Suggested Citation

  • Chang-Gi Min & Mun-Kyeom Kim, 2017. "Flexibility-Based Evaluation of Variable Generation Acceptability in Korean Power System," Energies, MDPI, vol. 10(6), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:825-:d:101844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, J. & Botterud, A. & Bessa, R. & Keko, H. & Carvalho, L. & Issicaba, D. & Sumaili, J. & Miranda, V., 2011. "Wind power forecasting uncertainty and unit commitment," Applied Energy, Elsevier, vol. 88(11), pages 4014-4023.
    2. Min, C.G. & Park, J.K. & Hur, D. & Kim, M.K., 2016. "A risk evaluation method for ramping capability shortage in power systems," Energy, Elsevier, vol. 113(C), pages 1316-1324.
    3. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    4. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    5. He, Y.X. & Xia, T. & Liu, Z.Y. & Zhang, T. & Dong, Z., 2013. "Evaluation of the capability of accepting large-scale wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 509-516.
    6. Mo Chung & Suk Gyu Lee & Chuhwan Park & Hwa-Choon Park & Yong-Hoon Im, 2013. "Development of a Combined Energy-Demands Calculator for Urban Building Communities in Korea," Environment and Planning B, , vol. 40(2), pages 289-310, April.
    7. Lin, Jin & Cheng, Lin & Chang, Yao & Zhang, Kai & Shu, Bin & Liu, Guangyi, 2014. "Reliability based power systems planning and operation with wind power integration: A review to models, algorithms and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 921-934.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woo-Cheol Jeong & Da-Han Lee & Jae Hyung Roh & Jong-Bae Park, 2022. "Scenario Analysis of the GHG Emissions in the Electricity Sector through 2030 in South Korea Considering Updated NDC," Energies, MDPI, vol. 15(9), pages 1-12, May.
    2. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Net Load Carrying Capability of Generating Units in Power Systems," Energies, MDPI, vol. 10(8), pages 1-13, August.
    3. Lin He & Chang-Ling Li & Qing-Yun Nie & Yan Men & Hai Shao & Jiang Zhu, 2017. "Core Abilities Evaluation Index System Exploration and Empirical Study on Distributed PV-Generation Projects," Energies, MDPI, vol. 10(12), pages 1-18, December.
    4. Changgi Min, 2020. "Impact Analysis of Transmission Congestion on Power System Flexibility in Korea," Energies, MDPI, vol. 13(9), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
    2. Min, C.G. & Park, J.K. & Hur, D. & Kim, M.K., 2016. "A risk evaluation method for ramping capability shortage in power systems," Energy, Elsevier, vol. 113(C), pages 1316-1324.
    3. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    4. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    5. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    6. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
    7. Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.
    8. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
    9. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    10. Hua Zhou & Huahua Wu & Chengjin Ye & Shijie Xiao & Jun Zhang & Xu He & Bo Wang, 2019. "Integration Capability Evaluation of Wind and Photovoltaic Generation in Power Systems Based on Temporal and Spatial Correlations," Energies, MDPI, vol. 12(1), pages 1-12, January.
    11. Bennett, Jeffrey A. & Fuhrman, Jay & Brown, Tyler & Andrews, Nathan & Fittro, Roger & Clarens, Andres F., 2019. "Feasibility of Using sCO2 Turbines to Balance Load in Power Grids with a High Deployment of Solar Generation," Energy, Elsevier, vol. 181(C), pages 548-560.
    12. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    13. Li, Canbing & Shi, Haiqing & Cao, Yijia & Wang, Jianhui & Kuang, Yonghong & Tan, Yi & Wei, Jing, 2015. "Comprehensive review of renewable energy curtailment and avoidance: A specific example in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1067-1079.
    14. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    15. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Net Load Carrying Capability of Generating Units in Power Systems," Energies, MDPI, vol. 10(8), pages 1-13, August.
    16. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    17. Soini, Martin Christoph & Parra, David & Patel, Martin Kumar, 2020. "Does bulk electricity storage assist wind and solar in replacing dispatchable power production?," Energy Economics, Elsevier, vol. 85(C).
    18. Vanegas Cantarero, María Mercedes, 2018. "Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?," Energy Policy, Elsevier, vol. 120(C), pages 580-592.
    19. Hameedullah Zaheb & Mikaeel Ahmadi & Nisar Ahmad Rahmany & Mir Sayed Shah Danish & Habibullah Fedayi & Atsushi Yona, 2023. "Optimal Grid Flexibility Assessment for Integration of Variable Renewable-Based Electricity Generation," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    20. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:825-:d:101844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.