IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1822-d118285.html
   My bibliography  Save this article

Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants

Author

Listed:
  • Emma Lindkvist

    (Department of Management and Engineering, Division of Energy Systems, Linköping University, SE-581 83 Linköping, Sweden
    Biogas Research Center, Linköping University, SE-581 83 Linköping, Sweden)

  • Maria T. Johansson

    (Department of Management and Engineering, Division of Energy Systems, Linköping University, SE-581 83 Linköping, Sweden
    Biogas Research Center, Linköping University, SE-581 83 Linköping, Sweden)

  • Jakob Rosenqvist

    (Tranås Energi, SE-573 24 Tranås, Sweden)

Abstract

Biogas production through anaerobic digestion may play an important role in a circular economy because of the opportunity to produce a renewable fuel from organic waste. However, the production of biogas may require energy in the form of heat and electricity. Therefore, resource-effective biogas production must consider both biological and energy performance. For the individual biogas plant to improve its energy performance, a robust methodology to analyse and evaluate the energy demand on a detailed level is needed. Moreover, to compare the energy performance of different biogas plants, a methodology with a consistent terminology, system boundary and procedure is vital. The aim of this study was to develop a methodology for analysing the energy demand in biogas plants on a detailed level. In the methodology, the energy carriers are allocated to: (1) sub-processes (e.g., pretreatment, anaerobic digestion, gas cleaning), (2) unit processes (e.g., heating, mixing, pumping, lighting) and (3) a combination of these. For a thorough energy analysis, a combination of allocations is recommended. The methodology was validated by applying it to two different biogas plants. The results show that the methodology is applicable to biogas plants with different configurations of their production system.

Suggested Citation

  • Emma Lindkvist & Maria T. Johansson & Jakob Rosenqvist, 2017. "Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants," Energies, MDPI, vol. 10(11), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1822-:d:118285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Havukainen, J. & Uusitalo, V. & Niskanen, A. & Kapustina, V. & Horttanainen, M., 2014. "Evaluation of methods for estimating energy performance of biogas production," Renewable Energy, Elsevier, vol. 66(C), pages 232-240.
    2. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    3. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    4. Punam Singh & Pramod Singh & Haripriya Gundimeda, 2014. "Energy and environmental benefits of family biogas plants in India," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 10(3/4), pages 235-264.
    5. Djatkov, Djordje & Effenberger, Mathias & Lehner, Andreas & Martinov, Milan & Tesic, Milos & Gronauer, Andreas, 2012. "New method for assessing the performance of agricultural biogas plants," Renewable Energy, Elsevier, vol. 40(1), pages 104-112.
    6. Lixiao Zhang & Changbo Wang, 2014. "Energy and GHG Analysis of Rural Household Biogas Systems in China," Energies, MDPI, vol. 7(2), pages 1-18, February.
    7. Martí-Herrero, Jaime & Chipana, Maria & Cuevas, Carlos & Paco, Gabriel & Serrano, Victor & Zymla, Bernhard & Heising, Klas & Sologuren, Jaime & Gamarra, Alba, 2014. "Low cost tubular digesters as appropriate technology for widespread application: Results and lessons learned from Bolivia," Renewable Energy, Elsevier, vol. 71(C), pages 156-165.
    8. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    9. Ghimire, Prakash C., 2013. "SNV supported domestic biogas programmes in Asia and Africa," Renewable Energy, Elsevier, vol. 49(C), pages 90-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph S. Pechsiri & Fredrik Gröndahl, 2022. "Assessing energy return on investment for harvest of wild Nodularia spumigena during blooms in the Baltic Sea," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 1979-1991, December.
    2. Dávid Nagy & Péter Balogh & Zoltán Gabnai & József Popp & Judit Oláh & Attila Bai, 2018. "Economic Analysis of Pellet Production in Co-Digestion Biogas Plants," Energies, MDPI, vol. 11(5), pages 1-21, May.
    3. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    4. Andrea Baccioli & Lorenzo Ferrari & Romain Guiller & Oumayma Yousfi & Francesco Vizza & Umberto Desideri, 2019. "Feasibility Analysis of Bio-Methane Production in a Biogas Plant: A Case Study," Energies, MDPI, vol. 12(3), pages 1-16, February.
    5. Claudinei De Souza Guimarães & David Rodrigues da Silva Maia & Eduardo Gonçalves Serra, 2018. "Construction of Biodigesters to Optimize the Production of Biogas from Anaerobic Co-Digestion of Food Waste and Sewage," Energies, MDPI, vol. 11(4), pages 1-10, April.
    6. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
    2. Havukainen, J. & Uusitalo, V. & Niskanen, A. & Kapustina, V. & Horttanainen, M., 2014. "Evaluation of methods for estimating energy performance of biogas production," Renewable Energy, Elsevier, vol. 66(C), pages 232-240.
    3. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    4. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    5. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    6. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    7. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    8. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    9. Sica, Daniela & Esposito, Benedetta & Supino, Stefania & Malandrino, Ornella & Sessa, Maria Rosaria, 2023. "Biogas-based systems: An opportunity towards a post-fossil and circular economy perspective in Italy," Energy Policy, Elsevier, vol. 182(C).
    10. Montorsi, L. & Milani, M. & Venturelli, M., 2018. "Economic assessment of an integrated waste to energy system for an urban sewage treatment plant: A numerical approach," Energy, Elsevier, vol. 158(C), pages 105-110.
    11. Moreda, Iván López, 2016. "The potential of biogas production in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1580-1591.
    12. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    13. Dávid Nagy & Péter Balogh & Zoltán Gabnai & József Popp & Judit Oláh & Attila Bai, 2018. "Economic Analysis of Pellet Production in Co-Digestion Biogas Plants," Energies, MDPI, vol. 11(5), pages 1-21, May.
    14. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    15. Andreas Eder & Bernhard Mahlberg, 2018. "Size, Subsidies and Technical Efficiency in Renewable Energy Production: The Case of Austrian Biogas Plants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    16. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    17. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    19. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    20. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1822-:d:118285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.