IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v72y2018icp187-197.html
   My bibliography  Save this article

Bus rapid transit (BRT): A simulation and multi criteria decision making (MCDM) approach

Author

Listed:
  • Kiani Mavi, Reza
  • Zarbakhshnia, Navid
  • Khazraei, Armin

Abstract

Bus rapid transit (BRT) system as a transportation mode has a higher occupancy rate and is more suitable for long distances. Sustainability issues and improving BRT performance to enhance customer satisfaction require performance evaluation of possible alternatives. For this end, four scenarios as 1) adding buses to the BRT line, 2) speeding up the BRT buses, 3) reducing delay time, and 4) increasing the capacity of buses were simulated with Arena 14. Then, we developed Grey Step-wise Weight Assessment Ratio Analysis (SWARA-G) approach to weigh evaluation criteria including sustainability and risk factors. We implemented Grey COmplex PRoportional ASsessment of alternatives (COPRAS-G) to rank scenarios. Findings show that adding buses to the BRT line is the best alternative for improving the performance of the BRT line 1 in Tehran.

Suggested Citation

  • Kiani Mavi, Reza & Zarbakhshnia, Navid & Khazraei, Armin, 2018. "Bus rapid transit (BRT): A simulation and multi criteria decision making (MCDM) approach," Transport Policy, Elsevier, vol. 72(C), pages 187-197.
  • Handle: RePEc:eee:trapol:v:72:y:2018:i:c:p:187-197
    DOI: 10.1016/j.tranpol.2018.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17306649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2018.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Hensher & Zheng Li, 2012. "Erratum to: Ridership drivers of bus rapid transit systems," Transportation, Springer, vol. 39(6), pages 1223-1224, November.
    2. Eboli, Laura & Mazzulla, Gabriella, 2011. "A methodology for evaluating transit service quality based on subjective and objective measures from the passenger's point of view," Transport Policy, Elsevier, vol. 18(1), pages 172-181, January.
    3. Milakis, Dimitris & Athanasopoulos, Konstantinos, 2014. "What about people in cycle network planning? applying participative multicriteria GIS analysis in the case of the Athens metropolitan cycle network," Journal of Transport Geography, Elsevier, vol. 35(C), pages 120-129.
    4. Turcksin, Laurence & Macharis, Cathy & Lebeau, Kenneth & Boureima, Faycal & Van Mierlo, Joeri & Bram, Svend & De Ruyck, Jacques & Mertens, Lara & Jossart, Jean-Marc & Gorissen, Leen & Pelkmans, Luc, 2011. "A multi-actor multi-criteria framework to assess the stakeholder support for different biofuel options: The case of Belgium," Energy Policy, Elsevier, vol. 39(1), pages 200-214, January.
    5. Celik, Erkan & Bilisik, Ozge Nalan & Erdogan, Melike & Gumus, Alev Taskin & Baracli, Hayri, 2013. "An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 28-51.
    6. de Oña, Juan & de Oña, Rocío & Eboli, Laura & Mazzulla, Gabriella, 2013. "Perceived service quality in bus transit service: A structural equation approach," Transport Policy, Elsevier, vol. 29(C), pages 219-226.
    7. Craig Townsend & John Zacharias, 2010. "Built environment and pedestrian behavior at rail rapid transit stations in Bangkok," Transportation, Springer, vol. 37(2), pages 317-330, March.
    8. Wu, Irene & Pojani, Dorina, 2016. "Obstacles to the creation of successful bus rapid transit systems: The case of Bangkok," Research in Transportation Economics, Elsevier, vol. 60(C), pages 44-53.
    9. David Hensher & Zheng Li, 2012. "Ridership drivers of bus rapid transit systems," Transportation, Springer, vol. 39(6), pages 1209-1221, November.
    10. Azadi, Majid & Shabani, Amir & Khodakarami, Mohsen & Farzipoor Saen, Reza, 2015. "Reprint of “Planning in feasible region by two-stage target-setting DEA methods: An application in green supply chain management of public transportation service providers”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 74(C), pages 22-36.
    11. J. Javid, Roxana & Nejat, Ali & Hayhoe, Katharine, 2014. "Selection of CO2 mitigation strategies for road transportation in the United States using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 960-972.
    12. Wan, Dan & Kamga, Camille & Liu, Jun & Sugiura, Aaron & Beaton, Eric B., 2016. "Rider perception of a “light” Bus Rapid Transit system - The New York City Select Bus Service," Transport Policy, Elsevier, vol. 49(C), pages 41-55.
    13. David Heres & Darby Jack & Deborah Salon, 2014. "Do public transport investments promote urban economic development? Evidence from bus rapid transit in Bogotá, Colombia," Transportation, Springer, vol. 41(1), pages 57-74, January.
    14. Mulley, Corinne & Tsai, Chi-Hong (Patrick), 2016. "When and how much does new transport infrastructure add to property values? Evidence from the bus rapid transit system in Sydney, Australia," Transport Policy, Elsevier, vol. 51(C), pages 15-23.
    15. David Hensher & Thomas Golob, 2008. "Bus rapid transit systems: a comparative assessment," Transportation, Springer, vol. 35(4), pages 501-518, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Pérez-Dominguez & Sara-Nohemí Almeraz Durán & Roberto Romero López & Iván Juan Carlos Pérez-Olguin & David Luviano-Cruz & Jesús Andrés Hernández Gómez, 2021. "Assessment Urban Transport Service and Pythagorean Fuzzy Sets CODAS Method: A Case of Study of Ciudad Juárez," Sustainability, MDPI, vol. 13(3), pages 1-18, January.
    2. Muhammad Nadeem & Muhammad Azam & Muhammad Asim & Muhammad Ahmad Al-Rashid & Othman Che Puan & Tiziana Campisi, 2021. "Does Bus Rapid Transit System (BRTS) Meet the Citizens’ Mobility Needs? Evaluating Performance for the Case of Multan, Pakistan," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    3. Xu-Hui Li & Lin Huang & Qiang Li & Hu-Chen Liu, 2020. "Passenger Satisfaction Evaluation of Public Transportation Using Pythagorean Fuzzy MULTIMOORA Method under Large Group Environment," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    4. Karthik, P.N. & Rathod, Nihesh & Yasodharan, Sarath & Lobo, Wilson & Sahadevan, Ajeesh & Sundaresan, Rajesh & Verma, Pratik, 2023. "Bus priority lane in Bengaluru: A study on its effectiveness and driver stress," Transport Policy, Elsevier, vol. 139(C), pages 39-62.
    5. Navid Zarbakhshnia & Kannan Govindan & Devika Kannan & Mark Goh, 2023. "Outsourcing logistics operations in circular economy towards to sustainable development goals," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 134-162, January.
    6. Khattak, Afaq & Hussain, Arshad, 2021. "Hybrid DES-PSO framework for the design of commuters’ circulation space at multimodal transport interchange," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 205-229.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Celik, Erkan & Aydin, Nezir & Gumus, Alev Taskin, 2014. "A multiattribute customer satisfaction evaluation approach for rail transit network: A real case study for Istanbul, Turkey," Transport Policy, Elsevier, vol. 36(C), pages 283-293.
    2. Hensher, David A. & Li, Zheng & Mulley, Corinne, 2014. "Drivers of bus rapid transit systems – Influences on patronage and service frequency," Research in Transportation Economics, Elsevier, vol. 48(C), pages 159-165.
    3. Aydin, Nezir, 2017. "A fuzzy-based multi-dimensional and multi-period service quality evaluation outline for rail transit systems," Transport Policy, Elsevier, vol. 55(C), pages 87-98.
    4. Li, Zheng & Hensher, David A., 2020. "Performance contributors of bus rapid transit systems: An ordered choice approach," Economic Analysis and Policy, Elsevier, vol. 67(C), pages 154-161.
    5. Johanna Camargo Pérez & Martha Carrillo & Jairo Montoya-Torres, 2015. "Multi-criteria approaches for urban passenger transport systems: a literature review," Annals of Operations Research, Springer, vol. 226(1), pages 69-87, March.
    6. Dan Wan & Camille Kamga & Wei Hao & Aaron Sugiura & Eric B. Beaton, 2016. "Customer satisfaction with bus rapid transit: a study of New York City select bus service applying structural equation modeling," Public Transport, Springer, vol. 8(3), pages 497-520, December.
    7. Wan, Dan & Kamga, Camille & Liu, Jun & Sugiura, Aaron & Beaton, Eric B., 2016. "Rider perception of a “light” Bus Rapid Transit system - The New York City Select Bus Service," Transport Policy, Elsevier, vol. 49(C), pages 41-55.
    8. Merkert, Rico & Mulley, Corinne & Hakim, Md Mahbubul, 2017. "Determinants of bus rapid transit (BRT) system revenue and effectiveness – A global benchmarking exercise," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 75-88.
    9. Aydin, Nezir & Celik, Erkan & Gumus, Alev Taskin, 2015. "A hierarchical customer satisfaction framework for evaluating rail transit systems of Istanbul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 61-81.
    10. Guzman, Luis A. & Beltran, Carlos & Bonilla, Jorge & Gomez Cardona, Santiago, 2021. "BRT fare elasticities from smartcard data: Spatial and time-of-the-day differences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 335-348.
    11. Miriam Rocha & Cristina Albuquerque Moreira Silva & Reinaldo Germano Santos Junior & Michel Anzanello & Gabrielli Harumi Yamashita & Luis Antonio Lindau, 2020. "Selecting the most relevant variables towards clustering bus priority corridors," Public Transport, Springer, vol. 12(3), pages 587-609, October.
    12. Irem Batool & Muhammad Irshad & Muhammad Abid, 2020. "A Policy Move towards Sustainable Urban Transport in Pakistan: Measuring the Social, Environmental and Economic Impacts of Lahore BRT System," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 25(1), pages 27-57, Jan-June.
    13. Ojeda Diaz, Alfredo J. & Cantillo, Víctor & Arellana, Julián, 2023. "Understanding how individuals perceive changes in the built environment and the transport system after implementing a BRT system. The case of Barranquilla, Colombia," Journal of Transport Geography, Elsevier, vol. 110(C).
    14. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    15. Díez-Mesa, Francisco & de Oña, Rocio & de Oña, Juan, 2018. "Bayesian networks and structural equation modelling to develop service quality models: Metro of Seville case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 1-13.
    16. Efthymiou, Dimitrios & Antoniou, Constantinos, 2017. "Understanding the effects of economic crisis on public transport users’ satisfaction and demand," Transport Policy, Elsevier, vol. 53(C), pages 89-97.
    17. Ni, Anning & Zhang, Chunqin & Hu, Yuting & Lu, Weite & Li, Hongwei, 2020. "Influence mechanism of the corporate image on passenger satisfaction with public transport in China," Transport Policy, Elsevier, vol. 94(C), pages 54-65.
    18. Guzman, Luis A. & Enríquez, Hernán Darío & Hessel, Phillip, 2021. "BRT system in Bogotá and urban effects: More residential land premiums?," Research in Transportation Economics, Elsevier, vol. 90(C).
    19. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    20. Li, Wenhua & Yu, Suihuai & Pei, Huining & Zhao, Chuan & Tian, Baozhen, 2017. "A hybrid approach based on fuzzy AHP and 2-tuple fuzzy linguistic method for evaluation in-flight service quality," Journal of Air Transport Management, Elsevier, vol. 60(C), pages 49-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:72:y:2018:i:c:p:187-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.