IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v61y2014icp1-12.html
   My bibliography  Save this article

Dynamic impact on global supply chains performance of disruptions propagation produced by terrorist acts

Author

Listed:
  • Bueno-Solano, Alfredo
  • Cedillo-Campos, Miguel Gastón

Abstract

Understanding disruptions and how their effects propagate through the supply chain is critical to promote security and efficient movement of goods. This research proposes a system dynamics model as an effective quantitative approach for analyzing the effects of the materialization and simultaneous propagation of disruptions produced by terrorist acts on global supply chains performance. The article shows that the impact on inventory levels in the supply chain can increase 600% compared to normal operating conditions as a result of increasing the security measures on international borders. Finally, useful conclusions for designing more resilient supply chains and future research are exposed.

Suggested Citation

  • Bueno-Solano, Alfredo & Cedillo-Campos, Miguel Gastón, 2014. "Dynamic impact on global supply chains performance of disruptions propagation produced by terrorist acts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 1-12.
  • Handle: RePEc:eee:transe:v:61:y:2014:i:c:p:1-12
    DOI: 10.1016/j.tre.2013.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554513001592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2013.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thun, Jörn-Henrik & Hoenig, Daniel, 2011. "An empirical analysis of supply chain risk management in the German automotive industry," International Journal of Production Economics, Elsevier, vol. 131(1), pages 242-249, May.
    2. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    3. Wilson, Martha C., 2007. "The impact of transportation disruptions on supply chain performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 295-320, July.
    4. Sterman, John D., 1989. "Misperceptions of feedback in dynamic decision making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(3), pages 301-335, June.
    5. Pfohl, Hans-Christian & Köhler, Holger & Thomas, David, 2010. "State of the art in supply chain risk management research. Empirical and conceptual findings and a roadmap for the implementation in practice," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 41981, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. V. Thomas & Biswajit Mahanty, 2021. "Dynamic assessment of control system designs of information shared supply chain network experiencing supplier disruption," Operational Research, Springer, vol. 21(1), pages 425-451, March.
    2. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    3. Cedillo-Campos, Miguel Gastón & Lizarraga-Lizarraga, Giovanni & Martner-Peyrelongue, Carlos Daniel, 2017. "MiF3 method: Modeling intermodal fluidity freight flows," Research in Transportation Economics, Elsevier, vol. 61(C), pages 15-24.
    4. Lai, Xinfeng & Chen, Zhixiang & Wang, Xin & Chiu, Chun-Hung, 2023. "Risk propagation and mitigation mechanisms of disruption and trade risks for a global production network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    5. Iftikhar, Ilaria Giannoccaro & Anas, 2023. "Mitigating ripple effect in supply networks: the effect of trust and topology on resilience," OSF Preprints 2spt3, Center for Open Science.
    6. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    7. Ernesto A. Lagarda-Leyva & María Paz Guadalupe Acosta-Quintana & Javier Portugal-Vásquez & Arnulfo A. Naranjo-Flores & Alfredo Bueno-Solano, 2023. "System Dynamics and Sustainable Solution: The Case in a Large-Scale Pallet Manufacturing Company," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    8. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    9. Mohamed El Abdellaoui & Gilles Pache, 2019. "Effects of disruptive events within the supply chain on perceived logistics performance," Economics Bulletin, AccessEcon, vol. 39(1), pages 41-54.
    10. Chen, Li-Ming & Liu, Yan Emma & Yang, Shu-Jung Sunny, 2015. "Robust supply chain strategies for recovering from unanticipated disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 198-214.
    11. Yang, Yuefeng & Xu, Xuerong, 2015. "Post-disaster grain supply chain resilience with government aid," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 139-159.
    12. Niknejad, Ali & Petrovic, Dobrila, 2016. "A fuzzy dynamic Inoperability Input–output Model for strategic risk management in Global Production Networks," International Journal of Production Economics, Elsevier, vol. 179(C), pages 44-58.
    13. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    14. Tianjian Yang & Weiguo Fan, 2016. "Information management strategies and supply chain performance under demand disruptions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 8-27, January.
    15. Tortorella, Guilherme L. & Fogliatto, Flavio S. & Saurin, Tarcísio A. & Tonetto, Leandro M. & McFarlane, Duncan, 2022. "Contributions of Healthcare 4.0 digital applications to the resilience of healthcare organizations during the COVID-19 outbreak," Technovation, Elsevier, vol. 111(C).
    16. Balster, Andreas & Friedrich, Hanno, 2019. "Dynamic freight flow modelling for risk evaluation in food supply," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 4-22.
    17. Cheshmberah Mohsen, 2020. "Developing an Integrated Framework for Supplier Evaluation based on Relevant Attributes and Performance Measures," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 101-113, February.
    18. Cedillo-Campos, Miguel Gastón & Piña-Barcenas, Jared & Pérez-González, Carlos Mario & Mora-Vargas, Jaime, 2022. "How to measure and monitor the transportation infrastructure contribution to logistics value of supply chains?," Transport Policy, Elsevier, vol. 120(C), pages 120-129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Azghandi & Jacqueline Griffin & Mohammad S. Jalali, 2018. "Minimization of Drug Shortages in Pharmaceutical Supply Chains: A Simulation-Based Analysis of Drug Recall Patterns and Inventory Policies," Complexity, Hindawi, vol. 2018, pages 1-14, December.
    2. Tianjian Yang & Weiguo Fan, 2016. "Information management strategies and supply chain performance under demand disruptions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 8-27, January.
    3. A. V. Thomas & Biswajit Mahanty, 2021. "Dynamic assessment of control system designs of information shared supply chain network experiencing supplier disruption," Operational Research, Springer, vol. 21(1), pages 425-451, March.
    4. Efthymios Katsoras & Patroklos Georgiadis, 2022. "A Dynamic Analysis for Mitigating Disaster Effects in Closed Loop Supply Chains," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    5. Qing Zhang & Weiguo Fan & Jianchang Lu & Siqian Wu & Xuechao Wang, 2021. "Research on Dynamic Analysis and Mitigation Strategies of Supply Chains under Different Disruption Risks," Sustainability, MDPI, vol. 13(5), pages 1-29, February.
    6. Katsoras, Efthymios & Georgiadis, Patroklos, 2022. "An integrated System Dynamics model for Closed Loop Supply Chains under disaster effects: The case of COVID-19," International Journal of Production Economics, Elsevier, vol. 253(C).
    7. V.L.M. Spiegler & A.T. Potter & M.M. Naim & D.R. Towill, 2016. "The value of nonlinear control theory in investigating the underlying dynamics and resilience of a grocery supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 265-286, January.
    8. Cannella, Salvatore & Dominguez, Roberto & Ponte, Borja & Framinan, Jose M., 2018. "Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times," International Journal of Production Economics, Elsevier, vol. 204(C), pages 264-277.
    9. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.
    10. Berry, D. & Naim, M. M., 1996. "Quantifying the relative improvements of redesign strategies in a P.C. supply chain," International Journal of Production Economics, Elsevier, vol. 46(1), pages 181-196, December.
    11. Towill, Denis R. & Zhou, Li & Disney, Stephen M., 2007. "Reducing the bullwhip effect: Looking through the appropriate lens," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 444-453, July.
    12. Oliva, Rogelio, 2003. "Model calibration as a testing strategy for system dynamics models," European Journal of Operational Research, Elsevier, vol. 151(3), pages 552-568, December.
    13. Hazhir Rahmandad & Nelson Repenning, 2016. "Capability erosion dynamics," Strategic Management Journal, Wiley Blackwell, vol. 37(4), pages 649-672, April.
    14. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    15. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    16. Li Chen & Hau L. Lee, 2012. "Bullwhip Effect Measurement and Its Implications," Operations Research, INFORMS, vol. 60(4), pages 771-784, August.
    17. Hazhir Rahmandad, 2012. "Impact of Growth Opportunities and Competition on Firm-Level Capability Development Trade-offs," Organization Science, INFORMS, vol. 23(1), pages 138-154, February.
    18. Gérard P. Cachon & Paul H. Zipkin, 1999. "Competitive and Cooperative Inventory Policies in a Two-Stage Supply Chain," Management Science, INFORMS, vol. 45(7), pages 936-953, July.
    19. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    20. Lin, Jinchai & Fan, Ruguo & Tan, Xianchun & Zhu, Kaiwei, 2021. "Dynamic decision and coordination in a low-carbon supply chain considering the retailer's social preference," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:61:y:2014:i:c:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.