IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v41y2007i7p644-654.html
   My bibliography  Save this article

Tolling traffic links under stochastic assignment: Modelling the relationship between the number and price level of tolled links and optimal traffic flows

Author

Listed:
  • Stewart, Kathryn

Abstract

The classical road-tolling problem is to toll network links such that under the principles of Wardropian User Equilibrium Assignment a System Optimising (SO) flow pattern is obtained. Stochastic assignment methods are accepted to be more realistic than deterministic and it is of interest to examine the potential for optimal tolling in the case of Stochastic User Equilibrium (SUE). In examining the case of Stochastic User Equilibrium the 'desired flow pattern' to be created must first be determined. The classical economics solution of replacing unit-cost flow functions with marginal-cost flow functions which under deterministic assignment produces the System Optimal solution (where Total Network Travel Cost (TNTC) is minimised) does not generally result in TNTC being minimised in the Stochastic Case. Instead such tolls produce a 'Stochastic System Optimal' (SSO) solution where the Total Perceived Network Travel Cost (TPNTC) is minimised. This paper examines and compares link-based tolling solutions to achieve both the SSO (TPNTC minimised) and true SO (TNTC minimised) under SUE and illustrates the concept with numerical examples. Such link-based tolling schemes produce network benefit by re-routing rather than traffic suppression as opposed to the cordon-based charging schemes which have been implemented in practice. Equity issues relating to charging schemes are discussed and the desirability of zero-toll routes is highlighted associated with greater potential political acceptability of charging schemes that do not impose excessive charges upon users (such as minimal or low revenue tolls). A heuristic is developed to toll network links in such a way as to balance the number of links tolled against the revenue required to produce a desired reduction in TNTC such that optimal network flow patterns are approached.

Suggested Citation

  • Stewart, Kathryn, 2007. "Tolling traffic links under stochastic assignment: Modelling the relationship between the number and price level of tolled links and optimal traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 644-654, August.
  • Handle: RePEc:eee:transa:v:41:y:2007:i:7:p:644-654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(06)00127-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verhoef, Erik T., 2002. "Second-best congestion pricing in general static transportation networks with elastic demands," Regional Science and Urban Economics, Elsevier, vol. 32(3), pages 281-310, May.
    2. Maher, Mike & Stewart, Kathryn & Rosa, Andrea, 2005. "Stochastic social optimum traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 753-767, September.
    3. Sumalee, Agachai & May, Tony & Shepherd, Simon, 2005. "Comparison of judgmental and optimal road pricing cordons," Transport Policy, Elsevier, vol. 12(5), pages 384-390, September.
    4. May, A. D. & Liu, R. & Shepherd, S. P. & Sumalee, A., 2002. "The impact of cordon design on the performance of road pricing schemes," Transport Policy, Elsevier, vol. 9(3), pages 209-220, July.
    5. Schade, Jens & Schlag, Bernhard, 2000. "Acceptability of Urban Transport Pricing," Research Reports 72, VATT Institute for Economic Research.
    6. May, A. D. & Milne, D. S., 2000. "Effects of alternative road pricing systems on network performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(6), pages 407-436, August.
    7. Hai Yang, 1999. "System Optimum, Stochastic User Equilibrium, and Optimal Link Tolls," Transportation Science, INFORMS, vol. 33(4), pages 354-360, November.
    8. Dial, Robert B., 2000. "Minimal-revenue congestion pricing Part II: An efficient algorithm for the general case," Transportation Research Part B: Methodological, Elsevier, vol. 34(8), pages 645-665, November.
    9. Dial, Robert B., 1999. "Minimal-revenue congestion pricing part I: A fast algorithm for the single-origin case," Transportation Research Part B: Methodological, Elsevier, vol. 33(3), pages 189-202, April.
    10. Zhang, Xiaoning & Yang, Hai, 2004. "The optimal cordon-based network congestion pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 517-537, July.
    11. Ison, Stephen, 1998. "A concept in the right place at the wrong time: congestion metering in the city of Cambridge," Transport Policy, Elsevier, vol. 5(3), pages 139-146, June.
    12. Maher, M. J. & Hughes, P. C., 1997. "A probit-based stochastic user equilibrium assignment model," Transportation Research Part B: Methodological, Elsevier, vol. 31(4), pages 341-355, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patriksson, Michael, 2008. "On the applicability and solution of bilevel optimization models in transportation science: A study on the existence, stability and computation of optimal solutions to stochastic mathematical programs," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 843-860, December.
    2. Jovanović, Radosav & Tošić, Vojin & Čangalović, Mirjana & Stanojević, Milan, 2014. "Anticipatory modulation of air navigation charges to balance the use of airspace network capacities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 84-99.
    3. Guo, Xiaolei & Yang, Hai & Liu, Tian-Liang, 2010. "Bounding the inefficiency of logit-based stochastic user equilibrium," European Journal of Operational Research, Elsevier, vol. 201(2), pages 463-469, March.
    4. Mahyar Amirgholy & Hojjat Rezaeestakhruie & Hossain Poorzahedy, 2015. "Multi-objective cordon price design to control long run adverse traffic effects in large urban areas," Netnomics, Springer, vol. 16(1), pages 1-52, August.
    5. Rotaris, Lucia & Danielis, Romeo & Marcucci, Edoardo & Massiani, Jérôme, 2010. "The urban road pricing scheme to curb pollution in Milan, Italy: Description, impacts and preliminary cost-benefit analysis assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 359-375, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheu, Jiuh-Biing & Yang, Hai, 2008. "An integrated toll and ramp control methodology for dynamic freeway congestion management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4327-4348.
    2. Jiang Qian Ying, 2015. "Optimization for Multiclass Residential Location Models with Congestible Transportation Networks," Transportation Science, INFORMS, vol. 49(3), pages 452-471, August.
    3. Maruyama, Takuya & Sumalee, Agachai, 2007. "Efficiency and equity comparison of cordon- and area-based road pricing schemes using a trip-chain equilibrium model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 655-671, August.
    4. Gentile, Guido & Papola, Natale & Persia, Luca, 2005. "Advanced pricing and rationing policies for large scale multimodal networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 612-631.
    5. de Palma, André & Kilani, Moez & Lindsey, Robin, 2005. "Congestion pricing on a road network: A study using the dynamic equilibrium simulator METROPOLIS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 588-611.
    6. Liu, Zhiyuan & Wang, Shuaian & Meng, Qiang, 2014. "Optimal joint distance and time toll for cordon-based congestion pricing," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 81-97.
    7. Qiang Meng & Zhiyuan Liu, 2011. "Trial-and-error method for congestion pricing scheme under side-constrained probit-based stochastic user equilibrium conditions," Transportation, Springer, vol. 38(5), pages 819-843, September.
    8. Jiashan Wang & Yingying Kang & Changhyun Kwon & Rajan Batta, 2012. "Dual Toll Pricing for Hazardous Materials Transport with Linear Delay," Networks and Spatial Economics, Springer, vol. 12(1), pages 147-165, March.
    9. Yang, Hai & Huang, Hai-Jun, 2004. "The multi-class, multi-criteria traffic network equilibrium and systems optimum problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 1-15, January.
    10. Yang, Hai & Zhang, Xiaoning & Meng, Qiang, 2004. "Modeling private highways in networks with entry-exit based toll charges," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 191-213, March.
    11. Agachai Sumalee & Simon Shepherd & Anthony May, 2009. "Road user charging design: dealing with multi-objectives and constraints," Transportation, Springer, vol. 36(2), pages 167-186, March.
    12. Meng, Qiang & Liu, Zhiyuan & Wang, Shuaian, 2012. "Optimal distance tolls under congestion pricing and continuously distributed value of time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 937-957.
    13. Zhang, H. M. & Ge, Y. E., 2004. "Modeling variable demand equilibrium under second-best road pricing," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 733-749, September.
    14. Koster, Paul & Verhoef, Erik & Shepherd, Simon & Watling, David, 2018. "Preference heterogeneity and congestion pricing: The two route case revisited," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 137-157.
    15. Peiyu Jing & Ravi Seshadri & Takanori Sakai & Ali Shamshiripour & Andre Romano Alho & Antonios Lentzakis & Moshe E. Ben-Akiva, 2023. "Evaluating congestion pricing schemes using agent-based passenger and freight microsimulation," Papers 2305.07318, arXiv.org.
    16. Zhang, Xiaoning & Yang, Hai, 2004. "The optimal cordon-based network congestion pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 517-537, July.
    17. Ho, H.W. & Wong, S.C. & Yang, Hai & Loo, Becky P.Y., 2005. "Cordon-based congestion pricing in a continuum traffic equilibrium system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 813-834.
    18. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong, 2011. "Pareto-improving congestion pricing on multimodal transportation networks," European Journal of Operational Research, Elsevier, vol. 210(3), pages 660-669, May.
    19. Mun, Se-il & Konishi, Ko-ji & Yoshikawa, Kazuhiro, 2005. "Optimal cordon pricing in a non-monocentric city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 723-736.
    20. Ian W.H. Parry, 2009. "Pricing Urban Congestion," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 461-484, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:41:y:2007:i:7:p:644-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.