Advanced Search
MyIDEAS: Login

Scheduling railway freight delivery appointments using a bid price approach

Contents:

Author Info

  • Kraft, Edwin R.
Registered author(s):

    Abstract

    This paper proposes a method for establishing aggressive but achievable delivery appointment times for railroad shipments, taking into account individual customer needs and forecasted available train capacity. The concept of scheduling appointment times is directly patterned after current motor carrier industry practice, so that customers can plan for rail or truck deliveries in the same way. A shipment routing problem is decomposed into a deterministic "dynamic car scheduling" (DCS) process for shipments already accepted and a stochastic "train segment pricing" (TSP) process for forecasting future demands which have not yet called in and for which delivery appointments have yet to be scheduled. Both are formulated as multi-commodity network flow (MCNF) problems, where each shipment is treated as a separate commodity. Gain coefficients represent recapture probabilities that a specific customer will accept a carrier's service offer. A comparison with a widely used revenue management formulation is given. A Lagrangian heuristic for obtaining a primal solution is also described. The problem is solved within a 1% gap using the subgradient algorithm.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6VG7-44J1CFJ-4/2/1249e2b66c8bb29cae09e58627a4a200
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Transportation Research Part A: Policy and Practice.

    Volume (Year): 36 (2002)
    Issue (Month): 2 (February)
    Pages: 145-165

    as in new window
    Handle: RePEc:eee:transa:v:36:y:2002:i:2:p:145-165

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=547&ref=547_01_ooc_1&version=01

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. McBride, Richard D., 1985. "Solving embedded generalized network problems," European Journal of Operational Research, Elsevier, vol. 21(1), pages 82-92, July.
    2. Ali, Agha Iqbal & Kennington, Jeff & Shetty, Bala, 1988. "The equal flow problem," European Journal of Operational Research, Elsevier, vol. 36(1), pages 107-115, July.
    3. Jeff Kennington & Mohamed Shalaby, 1977. "An Effective Subgradient Procedure for Minimal Cost Multicommodity Flow Problems," Management Science, INFORMS, vol. 23(9), pages 994-1004, May.
    4. Nozick, Linda K. & Morlok, Edward K., 1997. "A model for medium-term operations planning in an intermodal rail-truck service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(2), pages 91-107, March.
    5. Koning, Ruud H. & Ridder, Geert, 1994. "On the compatibility of nested logit models with utility maximization : A comment," Journal of Econometrics, Elsevier, vol. 63(2), pages 389-396, August.
    6. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    7. Powell, Warren B., 1987. "An operational planning model for the dynamic vehicle allocation problem with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 21(3), pages 217-232, June.
    8. ANDERSON, S. & de PALMA, A. & THISSE, J.-F., 1986. "A representative consumer theory of the logit model," CORE Discussion Papers 1986043, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Jason D. Papastavrou & Srikanth Rajagopalan & Anton J. Kleywegt, 1996. "The Dynamic and Stochastic Knapsack Problem with Deadlines," Management Science, INFORMS, vol. 42(12), pages 1706-1718, December.
    10. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    11. Kwon, Oh Kyoung & Martland, Carl D. & Sussman, Joseph M., 1998. "Routing and scheduling temporal and heterogeneous freight car traffic on rail networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(2), pages 101-115, June.
    12. Fukushima, Masao, 1984. "On the dual approach to the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 18(3), pages 235-245, June.
    13. Manrai, Ajay K., 1995. "Mathematical models of brand choice behavior," European Journal of Operational Research, Elsevier, vol. 82(1), pages 1-17, April.
    14. Borsch-Supan, Axel, 1990. "On the compatibility of nested logit models with utility maximization," Journal of Econometrics, Elsevier, vol. 43(3), pages 373-388, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Dominique Bouf & Yves Crozet & Sophie Masson & Pierre-Yves Péguy & Stéphanie Souche & Bjørnar Andreas Kvinge & Ioan Cuncev & Paola Cossu & Henning Tegner, 2003. "Overview of Infrastructure Charging, part 4, IMPROVERAIL Project Deliverable 9, “Improved Data Background to Support Current and Future Infrastructure Charging Systems”," Post-Print halshs-00142744, HAL.
    2. Lawley, Mark & Parmeshwaran, Vijay & Richard, Jean-Philippe & Turkcan, Ayten & Dalal, Malay & Ramcharan, David, 2008. "A time-space scheduling model for optimizing recurring bulk railcar deliveries," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 438-454, June.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:36:y:2002:i:2:p:145-165. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.