IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v137y2020icp165-186.html
   My bibliography  Save this article

Social equity-based timetabling and ticket pricing for high-speed railways

Author

Listed:
  • Zhan, Shuguang
  • Wong, S.C.
  • Lo, S.M.

Abstract

High-speed railways are expanding rapidly over the world, providing fast, convenient, and comfortable transport. It is therefore important to ensure that people are not excluded from high-speed railway use due to relatively high ticket prices. We aim to develop a railway timetable according to passenger requirements that explicitly considers social equity by applying variable ticket prices to trains. Specifically, we want to optimize ticket prices for trains operating during off-peak hours to improve accessibility for low-income passengers to improve social justice. A mixed integer linear programming model is formulated to solve our problem. In this timetabling-based model, we not only minimize the total general travel cost from a passenger perspective but also ensure that the revenue of the train company is no less than a specified value and that social equity is maintained at a specific level. To do this, we consider the social equity constraint and the minimum revenue requirement constraint, in addition to the traditional passenger-centric (-oriented) train timetabling-related constraints. Finally, we test our model on both a hypothetical high-speed railway network and the Guangzhou–Nanning and Guangzhou–Guilin high-speed railway network in China. The results demonstrate that the proposed optimization framework can provide a convenient timetable for passengers, adequate revenue for train companies and enhance social equity to meet government targets.

Suggested Citation

  • Zhan, Shuguang & Wong, S.C. & Lo, S.M., 2020. "Social equity-based timetabling and ticket pricing for high-speed railways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 165-186.
  • Handle: RePEc:eee:transa:v:137:y:2020:i:c:p:165-186
    DOI: 10.1016/j.tra.2020.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420305735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernand Martin, 1997. "Justifying a high-speed rail project: social value vs. regional growth," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(2), pages 155-174.
    2. Manaugh, Kevin & Badami, Madhav G. & El-Geneidy, Ahmed M., 2015. "Integrating social equity into urban transportation planning: A critical evaluation of equity objectives and measures in transportation plans in North America," Transport Policy, Elsevier, vol. 37(C), pages 167-176.
    3. van Vuuren, Daniel, 2002. "Optimal pricing in railway passenger transport: theory and practice in The Netherlands," Transport Policy, Elsevier, vol. 9(2), pages 95-106, April.
    4. Cordone, Roberto & Redaelli, Francesco, 2011. "Optimizing the demand captured by a railway system with a regular timetable," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 430-446, February.
    5. Jin Qin & Wenxuan Qu & Xuanke Wu & Yijia Zeng, 2019. "Differential Pricing Strategies of High Speed Railway Based on Prospect Theory: An Empirical Study from China," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    6. Romero, Natalia & Nozick, Linda K. & Xu, Ningxiong, 2016. "Hazmat facility location and routing analysis with explicit consideration of equity using the Gini coefficient," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 165-181.
    7. Zhou, Jiangping & Zhang, Min & Zhu, Pengyu, 2019. "The equity and spatial implications of transit fare," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 309-324.
    8. Hetrakul, Pratt & Cirillo, Cinzia, 2014. "A latent class choice based model system for railway optimal pricing and seat allocation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 68-83.
    9. Kim, Hyojin & Sultana, Selima, 2015. "The impacts of high-speed rail extensions on accessibility and spatial equity changes in South Korea from 2004 to 2018," Journal of Transport Geography, Elsevier, vol. 45(C), pages 48-61.
    10. Ben-Elia, Eran & Benenson, Itzhak, 2019. "A spatially-explicit method for analyzing the equity of transit commuters' accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 31-42.
    11. Bills, Tierra S. & Walker, Joan L., 2017. "Looking beyond the mean for equity analysis: Examining distributional impacts of transportation improvements," Transport Policy, Elsevier, vol. 54(C), pages 61-69.
    12. Nuzzolo, Agostino & Crisalli, Umberto & Gangemi, Francesca, 2000. "A behavioural choice model for the evaluation of railway supply and pricing policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(5), pages 395-404, June.
    13. Robenek, Tomáš & Azadeh, Shadi Sharif & Maknoon, Yousef & de Lapparent, Matthieu & Bierlaire, Michel, 2018. "Train timetable design under elastic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 19-38.
    14. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    15. Ping Yin & Francesca Pagliara & Alan Wilson, 2019. "How Does High-Speed Rail Affect Tourism? A Case Study of the Capital Region of China," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    16. Min Jiang & Euijune Kim, 2016. "Impact of high-speed railroad on regional income inequalities in China and Korea," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(3), pages 393-406, September.
    17. Meng, Qiang & Yang, Hai, 2002. "Benefit distribution and equity in road network design," Transportation Research Part B: Methodological, Elsevier, vol. 36(1), pages 19-35, January.
    18. Christian Liebchen, 2008. "The First Optimized Railway Timetable in Practice," Transportation Science, INFORMS, vol. 42(4), pages 420-435, November.
    19. Behbahani, Hamid & Nazari, Sobhan & Jafari Kang, Masood & Litman, Todd, 2019. "A conceptual framework to formulate transportation network design problem considering social equity criteria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 171-183.
    20. Laurino, Antonio & Ramella, Francesco & Beria, Paolo, 2015. "The economic regulation of railway networks: A worldwide survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 202-212.
    21. Vigren, Andreas, 2017. "Competition in Swedish passenger railway: Entry in an open access market and its effect on prices," Economics of Transportation, Elsevier, vol. 11, pages 49-59.
    22. Delbosc, Alexa & Currie, Graham, 2011. "Using Lorenz curves to assess public transport equity," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1252-1259.
    23. Chow, Andy H.F. & Pavlides, Aris, 2018. "Cost functions and multi-objective timetabling of mixed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 335-356.
    24. Gallo, Mariano, 2018. "Improving equity of urban transit systems with the adoption of origin-destination based taxi fares," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 38-55.
    25. Jens Parbo & Otto Anker Nielsen & Carlo Giacomo Prato, 2016. "Passenger Perspectives in Railway Timetabling: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 500-526, July.
    26. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    27. David Levinson, 2002. "Identifying Winners and Losers in Transportation," Working Papers 200204, University of Minnesota: Nexus Research Group.
    28. Bharill, Rohit & Rangaraj, Narayan, 2008. "Revenue management in railway operations: A study of the Rajdhani Express, Indian Railways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1195-1207, November.
    29. Ruiz, Maurici & Segui-Pons, Joana Maria & Mateu-LLadó, Jaume, 2017. "Improving Bus Service Levels and social equity through bus frequency modelling," Journal of Transport Geography, Elsevier, vol. 58(C), pages 220-233.
    30. Robenek, Tomáš & Maknoon, Yousef & Azadeh, Shadi Sharif & Chen, Jianghang & Bierlaire, Michel, 2016. "Passenger centric train timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 107-126.
    31. Pagliara, Francesca & La Pietra, Andrea & Gomez, Juan & Manuel Vassallo, José, 2015. "High Speed Rail and the tourism market: Evidence from the Madrid case study," Transport Policy, Elsevier, vol. 37(C), pages 187-194.
    32. Camporeale, Rosalia & Caggiani, Leonardo & Ottomanelli, Michele, 2019. "Modeling horizontal and vertical equity in the public transport design problem: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 184-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Guangming & Zhong, Linhuan & Hu, Xinlei & Liu, Wei, 2022. "Optimal pricing and seat allocation schemes in passenger railway systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    2. Zhang, Qin & Lusby, Richard Martin & Shang, Pan & Zhu, Xiaoning, 2022. "A heuristic approach to integrate train timetabling, platforming, and railway network maintenance scheduling decisions," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 210-238.
    3. Yang, Xutao & Wu, Jianhong & Zong, Yueqi & Wang, Chao, 2023. "Are China's HSR tariff affordable and economic equitable? An international comparison perspective," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    4. Bhatt, Ayushman & Kato, Hironori, 2021. "High-speed rails and knowledge productivity: A global perspective," Transport Policy, Elsevier, vol. 101(C), pages 174-186.
    5. Francesca Pagliara & Yoshitsugu Hayashi & Kallidaikurichi Seetha Ram, 2022. "High-Speed Rail, Equity and Inclusion," Sustainability, MDPI, vol. 14(11), pages 1-4, May.
    6. Li, Hui & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2021. "Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation," Transport Policy, Elsevier, vol. 106(C), pages 37-53.
    7. Zhan, Shuguang & Wang, Pengling & Wong, S.C. & Lo, S.M., 2022. "Energy-efficient high-speed train rescheduling during a major disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    8. Xie, Jiemin & Zhan, Shuguang & Wong, S.C. & Wen, Keyu & Qiang, Lixia & Lo, S.M., 2022. "High-speed rail services for elderly passengers: Ticket-booking patterns and policy implications," Transport Policy, Elsevier, vol. 125(C), pages 96-106.
    9. Francesca Pagliara, 2021. "Consumer’s Surplus: An Equity Measure of High Speed Rail Investments," Sustainability, MDPI, vol. 13(8), pages 1-8, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robenek, Tomáš & Azadeh, Shadi Sharif & Maknoon, Yousef & de Lapparent, Matthieu & Bierlaire, Michel, 2018. "Train timetable design under elastic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 19-38.
    2. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    3. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.
    4. Gabriella Vitorino Guimarães & Tálita Floriano Santos & Vicente Aprigliano Fernandes & Jorge Eliécer Córdoba Maquilón & Marcelino Aurélio Vieira da Silva, 2020. "Assessment for the Social Sustainability and Equity under the Perspective of Accessibility to Jobs," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    5. Xie, J. & Wong, S.C. & Zhan, S. & Lo, S.M. & Chen, Anthony, 2020. "Train schedule optimization based on schedule-based stochastic passenger assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    6. Cascetta, Ennio & Cartenì, Armando & Henke, Ilaria & Pagliara, Francesca, 2020. "Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: ten years ex post evaluation and future perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 412-428.
    7. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    8. Wenliang Zhou & Ziyu Zou & Naijie Chai & Guangming Xu, 2023. "Optimization of Differential Pricing and Seat Allocation in High-Speed Railways for Multi-Class Demands: A Chinese Case Study," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    9. Myeonghyeon Kim & Seung-Young Kho & Dong-Kyu Kim, 2019. "A Transit Route Network Design Problem Considering Equity," Sustainability, MDPI, vol. 11(13), pages 1-16, June.
    10. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    11. Jafino, Bramka Arga, 2021. "An equity-based transport network criticality analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 204-221.
    12. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    13. Wu, Rong & Li, Yingcheng & Wang, Shaojian, 2022. "Will the construction of high-speed rail accelerate urban land expansion? Evidences from Chinese cities," Land Use Policy, Elsevier, vol. 114(C).
    14. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    15. Polinder, G.-J. & Schmidt, M.E. & Huisman, D., 2020. "Timetabling for strategic passenger railway planning," ERIM Report Series Research in Management ERS-2020-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Högdahl, Johan & Bohlin, Markus & Fröidh, Oskar, 2019. "A combined simulation-optimization approach for minimizing travel time and delays in railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 192-212.
    17. Linovski, Orly & Baker, Dwayne Marshall & Manaugh, Kevin, 2018. "Equity in practice? Evaluations of equity in planning for bus rapid transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 75-87.
    18. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    19. Jomehpour Chahar Aman, Javad & Smith-Colin, Janille, 2020. "Transit Deserts: Equity analysis of public transit accessibility," Journal of Transport Geography, Elsevier, vol. 89(C).
    20. Liu, Chengliang & Duan, Dezhong, 2020. "Spatial inequality of bus transit dependence on urban streets and its relationships with socioeconomic intensities: A tale of two megacities in China," Journal of Transport Geography, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:137:y:2020:i:c:p:165-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.