IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/123973.html
   My bibliography  Save this paper

Timetabling for strategic passenger railway planning

Author

Listed:
  • Polinder, G.-J.
  • Schmidt, M.E.
  • Huisman, D.

Abstract

In research and practice, public transportation planning is executed in a series of steps, which are often divided into the strategic, the tactical, and the operational planning phase. Timetables are normally designed in the tactical phase, taking into account a given line plan, safety restrictions arising from infrastructural constraints, as well as regularity requirements and bounds on transfer times. In this paper, however, we propose a timetabling approach that is aimed at decision making in the strategic phase of public transportation planning and to determine an outline of a timetable that is good from the passengers’ perspective. Instead of including explicit synchronization constraints between train runs (as most timetabling models do), we include the adaption time (waiting time at the origin station) in the objective function to ensure regular connections between passengers’ origins and destinations. We model the problem as a mixed integer quadratic program and linearise it. Furthermore we propose a heuristic to generate starting solutions. We illustrate the type of solutions found by our approach on two case studies based on the Dutch railway network and analyse trade-offs that are made to balance dwell times and regularity of trains.

Suggested Citation

  • Polinder, G.-J. & Schmidt, M.E. & Huisman, D., 2020. "Timetabling for strategic passenger railway planning," ERIM Report Series Research in Management ERS-2020-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:123973
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/123973/ERS-2020-001-LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. SUTTER, Alain & VANDERBECK, François & WOLSEY, Laurence, 1998. "Optimal placement of add/drop multiplexers: heuristic and exact algorithms," LIDAM Reprints CORE 1340, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Belvaux, Gaetan & Boissin, Nicolas & Sutter, Alain & Wolsey, Laurence A., 1998. "Optimal placement of add /drop multiplexers static and dynamic models," European Journal of Operational Research, Elsevier, vol. 108(1), pages 26-35, July.
    3. Leo Kroon & Dennis Huisman & Erwin Abbink & Pieter-Jan Fioole & Matteo Fischetti & Gábor Maróti & Alexander Schrijver & Adri Steenbeek & Roelof Ybema, 2009. "The New Dutch Timetable: The OR Revolution," Interfaces, INFORMS, vol. 39(1), pages 6-17, February.
    4. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    5. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    6. Ralf Borndörfer & Heide Hoppmann & Marika Karbstein, 2017. "Passenger routing for periodic timetable optimization," Public Transport, Springer, vol. 9(1), pages 115-135, July.
    7. Alain S. Sutter & François Vanderbeck & Laurence Wolsey, 1998. "Optimal Placement of Add/Drop Multiplexers: Heuristic and Exact Algorithms," Operations Research, INFORMS, vol. 46(5), pages 719-728, October.
    8. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    9. Christian Liebchen, 2008. "The First Optimized Railway Timetable in Practice," Transportation Science, INFORMS, vol. 42(4), pages 420-435, November.
    10. Yin, Jiateng & Yang, Lixing & Tang, Tao & Gao, Ziyou & Ran, Bin, 2017. "Dynamic passenger demand oriented metro train scheduling with energy-efficiency and waiting time minimization: Mixed-integer linear programming approaches," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 182-213.
    11. BELVAUX, Gaetan & BOISSIN, Nicolas & SUTTER, Alain & WOLSEY, Laurence A., 1998. "Optimal placement of add/drop multiplexers: Static and dynamic models," LIDAM Reprints CORE 1320, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Robenek, Tomáš & Maknoon, Yousef & Azadeh, Shadi Sharif & Chen, Jianghang & Bierlaire, Michel, 2016. "Passenger centric train timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 107-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    2. Polinder, G.-J. & Cacchiani, V. & Schmidt, M.E. & Huisman, D., 2020. "An iterative heuristic for passenger-centric train timetabling with integrated adaption times," ERIM Report Series Research in Management ERS-2020-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polinder, Gert-Jaap & Schmidt, Marie & Huisman, Dennis, 2021. "Timetabling for strategic passenger railway planning," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 111-135.
    2. Polinder, G.-J. & Cacchiani, V. & Schmidt, M.E. & Huisman, D., 2020. "An iterative heuristic for passenger-centric train timetabling with integrated adaption times," ERIM Report Series Research in Management ERS-2020-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    4. Jiang, Feng & Cacchiani, Valentina & Toth, Paolo, 2017. "Train timetabling by skip-stop planning in highly congested lines," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 149-174.
    5. Xie, J. & Wong, S.C. & Zhan, S. & Lo, S.M. & Chen, Anthony, 2020. "Train schedule optimization based on schedule-based stochastic passenger assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    6. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    7. Wang, Dian & D’Ariano, Andrea & Zhao, Jun & Zhong, Qingwei & Peng, Qiyuan, 2022. "Integrated rolling stock deadhead routing and timetabling in urban rail transit lines," European Journal of Operational Research, Elsevier, vol. 298(2), pages 526-559.
    8. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    9. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    10. Sartor, Giorgio & Mannino, Carlo & Nygreen, Thomas & Bach, Lukas, 2023. "A MILP model for quasi-periodic strategic train timetabling," Omega, Elsevier, vol. 116(C).
    11. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    12. Van Aken, Sander & Bešinović, Nikola & Goverde, Rob M.P., 2017. "Designing alternative railway timetables under infrastructure maintenance possessions," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 224-238.
    13. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    14. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    15. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    16. Zhan, Shuguang & Wong, S.C. & Lo, S.M., 2020. "Social equity-based timetabling and ticket pricing for high-speed railways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 165-186.
    17. Hartleb, J. & Schmidt, M.E., 2019. "Railway timetabling with integrated passenger distribution," ERIM Report Series Research in Management ERS-2019-012-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Polinder, G.-J. & Breugem, T. & Dollevoet, T.A.B. & Maróti, G., 2019. "An Adjustable Robust Optimization Approach for Periodic Timetabling," Econometric Institute Research Papers EI2019-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Cole Smith, J., 2004. "Algorithms for distributing telecommunication traffic on a multiple-ring SONET-based network," European Journal of Operational Research, Elsevier, vol. 154(3), pages 659-672, May.
    20. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.

    More about this item

    Keywords

    public transportation planning; strategic timetabling; integration of timetabling and passenger routing;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:123973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.