IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v106y2017icp89-99.html
   My bibliography  Save this article

The use of electric vehicles: A case study on adding an electric car to a household

Author

Listed:
  • Jensen, Anders Fjendbo
  • Mabit, Stefan Lindhard

Abstract

The market share of battery electric vehicles (EVs) is expected to increase in the near future, but so far little is known about the actual usage of this emergent technology. Consumer preference studies have indicated that the current limitation on driving distance is important. At the same time studies on the actual use of household vehicles indicate modest requirements for daily travel. An unresolved issue is to what extent these range limitations affect daily travel in EVs. In this study, we use real electric vehicle trip data to study the distribution of daily use and types of home-based journeys where a household decides to use an electric vehicle instead of their conventional vehicle. The results show how several factors related to distance and number of necessary charging events have plausible effects on electric vehicle travel behaviour. Further, the modelling indicates that the EV alternative is mostly used for well-planned transport and that EV use will not be the same as use of the conventional vehicle in two-vehicle households.

Suggested Citation

  • Jensen, Anders Fjendbo & Mabit, Stefan Lindhard, 2017. "The use of electric vehicles: A case study on adding an electric car to a household," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 89-99.
  • Handle: RePEc:eee:transa:v:106:y:2017:i:c:p:89-99
    DOI: 10.1016/j.tra.2017.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416302865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2017.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    2. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    3. Greene, David L., 1985. "Estimating daily vehicle usage distributions and the implications for limited-range vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 347-358, August.
    4. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
    5. Golob, Thomas F. & Gould, Jane, 1998. "Projecting use of electric vehicles from household vehicle trials," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 441-454, September.
    6. Anders Jensen & Elisabetta Cherchi & Juan Dios Ortúzar, 2014. "A long panel survey to elicit variation in preferences and attitudes in the choice of electric vehicles," Transportation, Springer, vol. 41(5), pages 973-993, September.
    7. Bhat, Chandra R., 1995. "A heteroscedastic extreme value model of intercity travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 471-483, December.
    8. Koppelman, Frank S. & Sethi, Vaneet, 2005. "Incorporating variance and covariance heterogeneity in the Generalized Nested Logit model: an application to modeling long distance travel choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 39(9), pages 825-853, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weidong Meng & Ye Wang & Yuyu Li & Bo Huang, 2020. "Impact of product subsidies on R&D investment for new energy vehicle firms: Considering quality preference of the early adopter group," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    2. Han Su & Qian Zhang & Wanying Wang & Xiaoan Tang, 2021. "A Driving Behavior Distribution Fitting Method Based on Two-Stage Hybrid User Classification," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    3. Mustafa Hamurcu & Tamer Eren, 2023. "Multicriteria decision making and goal programming for determination of electric automobile aimed at sustainable green environment: a case study," Environment Systems and Decisions, Springer, vol. 43(2), pages 211-231, June.
    4. Habla, Wolfgang & Huwe, Vera & Kesternich, Martin, 2020. "Beyond monetary barriers to electric vehicle adoption: Evidence from observed usage of private and shared cars," ZEW Discussion Papers 20-026, ZEW - Leibniz Centre for European Economic Research.
    5. Grimm, Veronika & Kretschmer, Sandra & Mehl, Simon, 2020. "Green innovations: The organizational setup of pilot projects and its influence on consumer perceptions," Energy Policy, Elsevier, vol. 142(C).
    6. Haustein, Sonja & Jensen, Anders Fjendbo & Cherchi, Elisabetta, 2021. "Battery electric vehicle adoption in Denmark and Sweden: Recent changes, related factors and policy implications," Energy Policy, Elsevier, vol. 149(C).
    7. Wang, Lei & Fu, Zhong-Lin & Guo, Wei & Liang, Ruo-Yu & Shao, Hong-Yu, 2020. "What influences sales market of new energy vehicles in China? Empirical study based on survey of consumers’ purchase reasons," Energy Policy, Elsevier, vol. 142(C).
    8. Elham Allahmoradi & Saeed Mirzamohammadi & Ali Bonyadi Naeini & Ali Maleki & Saleh Mobayen & Paweł Skruch, 2022. "Policy Instruments for the Improvement of Customers’ Willingness to Purchase Electric Vehicles: A Case Study in Iran," Energies, MDPI, vol. 15(12), pages 1-17, June.
    9. Visaria, Anant Atul & Jensen, Anders Fjendbo & Thorhauge, Mikkel & Mabit, Stefan Eriksen, 2022. "User preferences for EV charging, pricing schemes, and charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 120-143.
    10. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    11. Anders F. Jensen & Thomas K. Rasmussen & Carlo G. Prato, 2020. "A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles," Sustainability, MDPI, vol. 12(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danielis, Romeo & Scorrano, Mariangela & Giansoldati, Marco & Rotaris, Lucia, 2019. "A meta-analysis of the importance of the driving range in consumers’ preference studies for battery electric vehicles," Working Papers 19_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    2. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    3. Ito, Nobuyuki & Takeuchi, Kenji & Managi, Shunsuke, 2019. "Do battery-switching systems accelerate the adoption of electric vehicles? A stated preference study," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 85-92.
    4. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    5. Iogansen, Xiatian & Wang, Kailai & Bunch, David & Matson, Grant & Circella, Giovanni, 2023. "Deciphering the factors associated with adoption of alternative fuel vehicles in California: An investigation of latent attitudes, socio-demographics, and neighborhood effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    6. Aydın Alptekinoğlu & John H. Semple, 2016. "The Exponomial Choice Model: A New Alternative for Assortment and Price Optimization," Operations Research, INFORMS, vol. 64(1), pages 79-93, February.
    7. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.
    8. Hackbarth, André & Madlener, Reinhard, 2016. "Willingness-to-pay for alternative fuel vehicle characteristics: A stated choice study for Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 89-111.
    9. Nakayama, Shoichiro & Chikaraishi, Makoto, 2015. "Unified closed-form expression of logit and weibit and its extension to a transportation network equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 672-685.
    10. Matthew Beck & John Rose & David Hensher, 2011. "Behavioural responses to vehicle emissions charging," Transportation, Springer, vol. 38(3), pages 445-463, May.
    11. Thurner, Thomas & Fursov, Konstantin & Nefedova, Alena, 2022. "Early adopters of new transportation technologies: Attitudes of Russia’s population towards car sharing, the electric car and autonomous driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 403-417.
    12. Simona Rasciute & Sean Puckett & Eric J. Pentecost, 2015. "The Allocation Of Oecd Direct Investment Between Ceecs: A Discrete Choice Approach," Bulletin of Economic Research, Wiley Blackwell, vol. 67(S1), pages 26-39, December.
    13. Guevara, C. Angelo & Figueroa, Esteban & Munizaga, Marcela A., 2021. "Paving the road for electric vehicles: Lessons from a randomized experiment in an introduction stage market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 326-340.
    14. Dixon, James & Andersen, Peter Bach & Bell, Keith & Træholt, Chresten, 2020. "On the ease of being green: An investigation of the inconvenience of electric vehicle charging," Applied Energy, Elsevier, vol. 258(C).
    15. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    16. Wenbo Li & Ruyin Long & Hong Chen & Jichao Geng, 2017. "Household factors and adopting intention of battery electric vehicles: a multi-group structural equation model analysis among consumers in Jiangsu Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 945-960, June.
    17. Daziano, Ricardo A., 2013. "Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range," Resource and Energy Economics, Elsevier, vol. 35(3), pages 429-450.
    18. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    19. Abbe, E. & Bierlaire, M. & Toledo, T., 2007. "Normalization and correlation of cross-nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 795-808, August.
    20. Higueras-Castillo, Elena & Kalinic, Zoran & Marinkovic, Veljko & Liébana-Cabanillas, Francisco J., 2020. "A mixed analysis of perceptions of electric and hybrid vehicles," Energy Policy, Elsevier, vol. 136(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:106:y:2017:i:c:p:89-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.