IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v105y2017icp181-196.html
   My bibliography  Save this article

Increasing the capacity of signalized intersections with left-turn waiting areas

Author

Listed:
  • Ma, Wanjing
  • Liu, Ye
  • Zhao, Jing
  • Wu, Ning

Abstract

One of the most complex issues for the design of at-grade signalized intersections is accommodating left-turn (LT) movements, especially when approaches have insufficient available spatial resources. In this study, we mitigated this problem by reorganizing left-turning traffic flows within intersections through the use of a left-turn waiting area (LTWA). We proposed a series of design pattern left-turn waiting areas for different combinations of spatial and temporal treatments of left-turn movements: exclusive left-turn lanes with protected left-turn phasing, exclusive left-turn lanes with permitted left-turn phasing, and shared left-turn lanes with permitted left-turn phasing. Based on probability theory, an analytical procedure is developed for estimating the capacity of shared and short lanes. Explicit VISSIM simulations are conducted to validate the accuracy of the proposed capacity models, and the impact of design parameters for the proposed system on the left-turn capacity are studied. On the basis of the analyses, benefits of the proposed system are identified, and the domain of application where these benefits are most significant is identified. In addition, optimal LTWA design scheme and critical LT volumes of exclusive LT lane and protected LT phase with different LTWA schemes are presented from the operation efficiency perspective.

Suggested Citation

  • Ma, Wanjing & Liu, Ye & Zhao, Jing & Wu, Ning, 2017. "Increasing the capacity of signalized intersections with left-turn waiting areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 181-196.
  • Handle: RePEc:eee:transa:v:105:y:2017:i:c:p:181-196
    DOI: 10.1016/j.tra.2017.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415300112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2017.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xuan, Yiguang & Daganzo, Carlos F. & Cassidy, Michael J., 2011. "Increasing the capacity of signalized intersections with separate left turn phases," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 769-781, June.
    2. Pollatschek, Moshe A. & Polus, Abishai & Livneh, Moshe, 2002. "A decision model for gap acceptance and capacity at intersections," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 649-663, August.
    3. Yin, Yafeng, 2008. "Robust optimal traffic signal timing," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 911-924, December.
    4. Wu, Ning, 2001. "A universal procedure for capacity determination at unsignalized (priority-controlled) intersections," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 593-623, July.
    5. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    6. Al-Kaisy, A. F. & Stewart, J. A., 2001. "New approach for developing warrants of protected left-turn phase at signalized intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 561-574, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binghong Pan & Shasha Luo & Jinfeng Ying & Yang Shao & Shangru Liu & Xiang Li & Jiaqi Lei, 2021. "Evaluation and Analysis of CFI Schemes with Different Length of Displaced Left-Turn Lanes with Entropy Method," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    2. Zhao, Jing & Yan, Jiachao & Wang, Jiawen, 2019. "Analysis of alternative treatments for left turn bicycles at tandem intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 314-328.
    3. Yang Shao & Zhongbin Luo & Huan Wu & Xueyan Han & Binghong Pan & Shangru Liu & Christian G. Claudel, 2020. "Evaluation of Two Improved Schemes at Non-Aligned Intersections Affected by a Work Zone with an Entropy Method," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    4. Hu, Sangen & Shen, Minyu & Gu, Weihua, 2023. "Impacts of bus overtaking policies on the capacity of bus stops," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    5. Xiancai Jiang & Li Yao & Yao Jin & Runting Wu, 2021. "Signal Control Method for Through and Left-Turn Shared Lane by Setting Left-Turn Waiting Area at Signalized Intersections," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    6. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jing & Yan, Jiachao & Wang, Jiawen, 2019. "Analysis of alternative treatments for left turn bicycles at tandem intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 314-328.
    2. Song, Yang & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2022. "Analytical approximation and calibration of roundabout capacity: A merging state transition-based modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 232-257.
    3. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    4. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of turning and through lane sharing on traffic performance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 622-640.
    5. Tan, Jiyuan & Li, Li & Li, Zhiheng & Zhang, Yi, 2013. "Distribution models for start-up lost time and effective departure flow rate," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 1-11.
    6. Yu, Chunhui & Ma, Wanjing & Han, Ke & Yang, Xiaoguang, 2017. "Optimization of vehicle and pedestrian signals at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 135-153.
    7. Chen Zhao & Yulin Chang & Peng Zhang, 2018. "Coordinated Control Model of Main-Signal and Pre-Signal for Intersections with Dynamic Waiting Lanes," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    8. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    9. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    10. Wei Wu & Wanjing Ma & Kejun Long & Heping Zhou & Yi Zhang, 2016. "Designing Sustainable Public Transportation: Integrated Optimization of Bus Speed and Holding Time in a Connected Vehicle Environment," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    11. Yifei Wang & Xin Zhang & Hideki Nakamura, 2024. "Left-Turn Lane Capacity Estimation based on the Vehicle Yielding Maneuver Model to Pedestrians at Signalized Intersections," Sustainability, MDPI, vol. 16(6), pages 1-13, March.
    12. Junwoo Song & Simon Hu & Ke Han & Chaozhe Jiang, 2020. "Nonlinear Decision Rule Approach for Real-Time Traffic Signal Control for Congestion and Emission Mitigation," Networks and Spatial Economics, Springer, vol. 20(3), pages 675-702, September.
    13. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.
    14. Yuanyuan Wu & Feng Zhu, 2021. "Junction Management for Connected and Automated Vehicles: Intersection or Roundabout?," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    15. Tang, Liying & Liu, Yugang & Li, JiaLi & Qi, Ruiting & Zheng, Shuai & Chen, Bin & Yang, Hongtai, 2020. "Pedestrian crossing design and analysis for symmetric intersections: Efficiency and safety," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 187-206.
    16. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    17. Dujardin, Yann & Vanderpooten, Daniel & Boillot, Florence, 2015. "A multi-objective interactive system for adaptive traffic control," European Journal of Operational Research, Elsevier, vol. 244(2), pages 601-610.
    18. Jingwei Wang & Yin Han & Peng Li, 2022. "Integrated Robust Optimization of Scheduling and Signal Timing for Bus Rapid Transit," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    19. Fei, Xinyu & Wang, Xingmin & Yu, Xian & Feng, Yiheng & Liu, Henry & Shen, Siqian & Yin, Yafeng, 2023. "Traffic signal control under stochastic traffic demand and vehicle turning via decentralized decomposition approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 712-736.
    20. Meshal Almoshaogeh & Hatem Abou-Senna & Essam Radwan & Husnain Haider, 2020. "Sustainable Design of Diverging Diamond Interchange: Development of Warrants for Improving Operational Performance," Sustainability, MDPI, vol. 12(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:105:y:2017:i:c:p:181-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.