IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v111y2018icp266-303.html
   My bibliography  Save this article

Analytical evaluation of the use of left-turn phasing for single left-turn lane only

Author

Listed:
  • Yang, Qiaoli
  • Shi, Zhongke
  • Yu, Shaowei
  • Zhou, Jie

Abstract

At most traditional signalized intersections, three types of phasing can be provided to left turns: protected only phasing, permitted only phasing, and a combination of protected and permitted phasing (protected/permitted phasing). While numerous guidelines for the selection of left-turn phasing have been developed, there is no widely recognized guideline or criterion for the use of left-turn phasing under specific traffic conditions especially for a single left-turn lane. Focusing on the inherent mechanism of the dynamic nature and uncertainty of left-turn queues under different left-turn phasing, this paper develops a left-turn queueing model with uncertain second vacation to analytically evaluate the performance of left turns for different left-turn phasing, which considers various factors including the type of left-turn phasing, signal timing, left-turn volume, opposing through volume, type of left-turn lane, number of opposing through lanes, and number of sneakers, etc. For different left-turn phasing, the left-turn queues formation and dissipation with different characteristics of vacations (i.e., server absences during the red time and uncertain blocked time caused by the opposing through flow during the permitted green time) are formulated, and the queue length distributions of left turns along with the time within one cycle and at an arbitrary time are derived. Furthermore, three sets of left-turn performance measures are obtained: primary queueing measures, fuel-consumption (or emissions) related measures, and safety related measure. On the basis of these performance measures, an analytical evaluation framework for left-turn queues is established, which can provide a more accurate and detailed basis for evaluating and improving the use of left-turn phasing. Model validation indicates that the proposed model can be an effective tool to evaluate the use of left-turn phasing under different traffic conditions. In addition, numerical experiments are also performed to theoretically identify the factors that could affect the performance of left turns and thus help to determine the left-turn phasing selection under different conditions.

Suggested Citation

  • Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
  • Handle: RePEc:eee:transb:v:111:y:2018:i:c:p:266-303
    DOI: 10.1016/j.trb.2018.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517308160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Troutbeck, Rod J. & Kako, Soichiro, 1999. "Limited priority merge at unsignalized intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(3-4), pages 291-304, April.
    2. Mung, Gregory K. S. & Poon, Antonio C. K. & Lam, William H. K., 1996. "Distributions of queue lengths at fixed time traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 421-439, December.
    3. Li, Baibing, 2017. "Stochastic modeling for vehicle platoons (II): Statistical characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 378-393.
    4. Chevallier, Estelle & Leclercq, Ludovic, 2007. "A macroscopic theory for unsignalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 41(10), pages 1139-1150, December.
    5. Hao, Peng & Ban, Xuegang (Jeff) & Guo, Dong & Ji, Qiang, 2014. "Cycle-by-cycle intersection queue length distribution estimation using sample travel times," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 185-204.
    6. Cheng Cheng & Yuchuan Du & Lijun Sun & Yuxiong Ji, 2016. "Review on Theoretical Delay Estimation Model for Signalized Intersections," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 479-499, July.
    7. Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
    8. J. S. H. van Leeuwaarden, 2006. "Delay Analysis for the Fixed-Cycle Traffic-Light Queue," Transportation Science, INFORMS, vol. 40(2), pages 189-199, May.
    9. Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
    10. Heidemann, Dirk, 1994. "Queue length and delay distributions at traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 377-389, October.
    11. Comert, Gurcan, 2013. "Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data," European Journal of Operational Research, Elsevier, vol. 226(1), pages 67-76.
    12. Viti, Francesco & van Zuylen, Henk J., 2010. "Probabilistic models for queues at fixed control signals," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 120-135, January.
    13. Al-Kaisy, A. F. & Stewart, J. A., 2001. "New approach for developing warrants of protected left-turn phase at signalized intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 561-574, July.
    14. Li, Baibing, 2017. "Stochastic modeling for vehicle platoons (I): Dynamic grouping behavior and online platoon recognition," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 364-377.
    15. Nicholas B. Taylor, 2018. "Predicting queue variability to enable analysis of overload risk," Transportation Planning and Technology, Taylor & Francis Journals, vol. 41(1), pages 37-57, January.
    16. Mung, Gregory K. S. & Poon, Antonio C. K. & Lam, William H. K. & Ip, W. C., 1998. "Distribution of the maximum number of opposed turns in a signal cycle at fixed time traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 32(6), pages 373-386, August.
    17. M. S. van den Broek & J. S. H. van Leeuwaarden & I. J. B. F. Adan & O. J. Boxma, 2006. "Bounds and Approximations for the Fixed-Cycle Traffic-Light Queue," Transportation Science, INFORMS, vol. 40(4), pages 484-496, November.
    18. Heidemann, Dirk & Wegmann, Helmut, 1997. "Queueing at unsignalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 239-263, June.
    19. Attahiru Sule Alfa & Marcel F. Neuts, 1995. "Modelling Vehicular Traffic Using the Discrete Time Markovian Arrival Process," Transportation Science, INFORMS, vol. 29(2), pages 109-117, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jing & Yan, Jiachao & Wang, Jiawen, 2019. "Analysis of alternative treatments for left turn bicycles at tandem intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 314-328.
    2. Yang, Qiaoli & Shi, Zhongke & Tang, Min-an & Gao, Fengyang & Yu, Shaowei, 2019. "Modeling the permissive-only left-turn queue at signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 315-325.
    3. Yang, Qiaoli & Shi, Zhongke, 2021. "The queue dynamics of protected/permissive left turns at pre-timed signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    4. Xiancai Jiang & Li Yao & Yao Jin & Runting Wu, 2021. "Signal Control Method for Through and Left-Turn Shared Lane by Setting Left-Turn Waiting Area at Signalized Intersections," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    5. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    6. Yang, Qiaoli & He, Yongzhen, 2022. "Right-turn-on-red queueing process at signalized intersections with a short right-turn lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Qiaoli & Shi, Zhongke, 2021. "The queue dynamics of protected/permissive left turns at pre-timed signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    2. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    3. Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
    4. António Pacheco & Maria Lurdes Simões Simões & Paula Milheiro-Oliveira, 2017. "Queues with Server Vacations as a Model for Pretimed Signalized Urban Traffic," Transportation Science, INFORMS, vol. 51(3), pages 841-851, August.
    5. Boon, Marko A.A. & van Leeuwaarden, Johan S.H., 2018. "Networks of fixed-cycle intersections," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 254-271.
    6. Comert, Gurcan, 2013. "Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data," European Journal of Operational Research, Elsevier, vol. 226(1), pages 67-76.
    7. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    8. Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
    9. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    10. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs & Qu, Xiaobo, 2020. "Public transport trajectory planning with probabilistic guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 81-101.
    11. Sara Sasaninejad & Joris Van Malderen & Joris Walraevens & Sabine Wittevrongel, 2023. "Expected Waiting Times at an Intersection with a Green Extension Strategy for Freight Vehicles: An Analytical Analysis," Mathematics, MDPI, vol. 11(3), pages 1-26, February.
    12. Yang, Qiaoli & Shi, Zhongke & Tang, Min-an & Gao, Fengyang & Yu, Shaowei, 2019. "Modeling the permissive-only left-turn queue at signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 315-325.
    13. Gao, Yuhong & Qu, Zhaowei & Song, Xianmin & Yun, Zhenyu & Xia, Yingji, 2021. "A novel relationship model between signal timing, queue length and travel speed," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    14. Wang, Zhengli & Zhu, Liyun & Ran, Bin & Jiang, Hai, 2020. "Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 59-71.
    15. Yang, Qiaoli & Deng, Kang & Gao, Fengyang & Yu, Shaowei & Dou, Zufang & Zhang, Tingrong, 2022. "Characterizing the dynamics and uncertainty of queues at signalized intersections with left-turn bay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    16. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    17. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    18. M. A. A. Boon & A. J. E. M. Janssen & J. S. H. Leeuwaarden & R. W. Timmerman, 2019. "Pollaczek contour integrals for the fixed-cycle traffic-light queue," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 89-111, February.
    19. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    20. Luo, Xiaoqian & Wang, Dianhai & Ma, Dongfang & Jin, Sheng, 2019. "Grouped travel time estimation in signalized arterials using point-to-point detectors," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 130-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:111:y:2018:i:c:p:266-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.