IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v252y2016i2p502-521.html
   My bibliography  Save this article

Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters

Author

Listed:
  • Comert, Gurcan

Abstract

This paper develops estimators for market penetration level and arrival rate in finding queue lengths from probe vehicles at isolated traffic intersections. Closed-form analytical expressions for expectations and variances of these estimators are formulated. Derived estimators are compared based on squared error losses. Effect of number of cycles (i.e., short-term and long-term performances), estimation at low penetration rates, and impact of combinations of derived estimators on queue length problem are also addressed. Fully analytical formulas with unknown parameters are derived to evaluate how queue length estimation errors change with respect to percent of probe vehicles in the traffic stream. Developed models can be used for the real-time cycle-to-cycle estimation of the queue lengths by inputting some of the fundamental information that probe vehicles provide (e.g., location, time, and count). Models are evaluated using VISSIM microscopic simulations with different arrival patterns. Numerical experiments show that the developed estimators are able to point the true arrival rate values at 5% probe penetration level with 10 cycles of data. For low penetrations such as 0.1%, large number of cycles of data is required by arrival rate estimators which are essential for overflow queue and volume-to-capacity ratios. Queue length estimation with tested parameter estimators is able to provide cycle-to-cycle errors within ±5% of coefficient of variations with less than 5 cycles of probe data at 0.1% penetration for all arrival rates used.

Suggested Citation

  • Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
  • Handle: RePEc:eee:ejores:v:252:y:2016:i:2:p:502-521
    DOI: 10.1016/j.ejor.2016.01.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716000850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.01.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hofleitner, Aude & Herring, Ryan & Bayen, Alexandre, 2012. "Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1097-1122.
    2. Ramezani, Mohsen & Geroliminis, Nikolas, 2012. "On the estimation of arterial route travel time distribution with Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1576-1590.
    3. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    4. Jenelius, Erik & Koutsopoulos, Haris N., 2013. "Travel time estimation for urban road networks using low frequency probe vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 64-81.
    5. Hao, Peng & Ban, Xuegang (Jeff) & Guo, Dong & Ji, Qiang, 2014. "Cycle-by-cycle intersection queue length distribution estimation using sample travel times," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 185-204.
    6. Xi, Bowei & Michailidis, George & Nair, Vijayan N., 2006. "Estimating Network Loss Rates Using Active Tomography," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1430-1448, December.
    7. Gao, Hongyan & Liu, Fasheng, 2013. "Estimating freeway traffic measures from mobile phone location data," European Journal of Operational Research, Elsevier, vol. 229(1), pages 252-260.
    8. M. S. van den Broek & J. S. H. van Leeuwaarden & I. J. B. F. Adan & O. J. Boxma, 2006. "Bounds and Approximations for the Fixed-Cycle Traffic-Light Queue," Transportation Science, INFORMS, vol. 40(4), pages 484-496, November.
    9. Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
    10. Li, Baibing, 2010. "Bayesian inference for vehicle speed and vehicle length using dual-loop detector data," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 108-119, January.
    11. J. S. H. van Leeuwaarden, 2006. "Delay Analysis for the Fixed-Cycle Traffic-Light Queue," Transportation Science, INFORMS, vol. 40(2), pages 189-199, May.
    12. Heidemann, Dirk, 1994. "Queue length and delay distributions at traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 377-389, October.
    13. Katsuhisa Ohno, 1978. "Computational Algorithm for a Fixed Cycle Traffic Signal and New Approximate Expressions for Average Delay," Transportation Science, INFORMS, vol. 12(1), pages 29-47, February.
    14. Comert, Gurcan, 2013. "Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data," European Journal of Operational Research, Elsevier, vol. 226(1), pages 67-76.
    15. Viti, Francesco & van Zuylen, Henk J., 2010. "Probabilistic models for queues at fixed control signals," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 120-135, January.
    16. Dailey, D. J., 1999. "A statistical algorithm for estimating speed from single loop volume and occupancy measurements," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 313-322, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    2. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    3. Wang, Zhengli & Zhu, Liyun & Ran, Bin & Jiang, Hai, 2020. "Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 59-71.
    4. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    5. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    2. Comert, Gurcan, 2013. "Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data," European Journal of Operational Research, Elsevier, vol. 226(1), pages 67-76.
    3. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    4. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    5. Nantes, Alfredo & Ngoduy, Dong & Miska, Marc & Chung, Edward, 2015. "Probabilistic travel time progression and its application to automatic vehicle identification data," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 131-145.
    6. Boon, Marko A.A. & van Leeuwaarden, Johan S.H., 2018. "Networks of fixed-cycle intersections," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 254-271.
    7. Gao, Yuhong & Qu, Zhaowei & Song, Xianmin & Yun, Zhenyu & Xia, Yingji, 2021. "A novel relationship model between signal timing, queue length and travel speed," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    8. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    9. António Pacheco & Maria Lurdes Simões Simões & Paula Milheiro-Oliveira, 2017. "Queues with Server Vacations as a Model for Pretimed Signalized Urban Traffic," Transportation Science, INFORMS, vol. 51(3), pages 841-851, August.
    10. Yang, Qiaoli & Shi, Zhongke, 2021. "The queue dynamics of protected/permissive left turns at pre-timed signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    11. Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
    12. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    13. Sara Sasaninejad & Joris Van Malderen & Joris Walraevens & Sabine Wittevrongel, 2023. "Expected Waiting Times at an Intersection with a Green Extension Strategy for Freight Vehicles: An Analytical Analysis," Mathematics, MDPI, vol. 11(3), pages 1-26, February.
    14. Luo, Xiaoqian & Wang, Dianhai & Ma, Dongfang & Jin, Sheng, 2019. "Grouped travel time estimation in signalized arterials using point-to-point detectors," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 130-151.
    15. Hans, Etienne & Chiabaut, Nicolas & Leclercq, Ludovic, 2015. "Applying variational theory to travel time estimation on urban arterials," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 169-181.
    16. Wang, Zhengli & Zhu, Liyun & Ran, Bin & Jiang, Hai, 2020. "Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 59-71.
    17. Hiribarren, Gabriel & Herrera, Juan Carlos, 2014. "Real time traffic states estimation on arterials based on trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 19-30.
    18. Wong, Wai & Wong, S.C., 2015. "Systematic bias in transport model calibration arising from the variability of linear data projection," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 1-18.
    19. Fangfang Zheng & Henk van Zuylen & Xiaobo Liu, 2017. "A Methodological Framework of Travel Time Distribution Estimation for Urban Signalized Arterial Roads," Transportation Science, INFORMS, vol. 51(3), pages 893-917, August.
    20. Coogan, Samuel & Flores, Christopher & Varaiya, Pravin, 2017. "Traffic predictive control from low-rank structure," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:252:y:2016:i:2:p:502-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.