IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v40y2006i2p189-199.html
   My bibliography  Save this article

Delay Analysis for the Fixed-Cycle Traffic-Light Queue

Author

Listed:
  • J. S. H. van Leeuwaarden

    (EURANDOM, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands)

Abstract

We consider the fixed-cycle traffic-light (FCTL) queue, where vehicles arrive at an intersection controlled by a traffic light and form a queue. The traffic-light signal alternates between green and red periods, and delayed vehicles are assumed to depart during the green period at equal time intervals.Most of the research done on the FCTL queue assumes that the vehicles arrive at the intersection according to a Poisson process and focuses on deriving formulas for the mean queue length at the end of green periods and the mean delay. For a class of discrete arrival processes, including the Poisson process, we derive the probability generating function of both the queue length and delay, from which the whole queue length and delay distribution can be obtained. This allows for the evaluation of performance characteristics other than the mean, such as the variance and percentiles of the distribution.We discuss the numerical procedures that are required to obtain the performance characteristics, and give several numerical examples.

Suggested Citation

  • J. S. H. van Leeuwaarden, 2006. "Delay Analysis for the Fixed-Cycle Traffic-Light Queue," Transportation Science, INFORMS, vol. 40(2), pages 189-199, May.
  • Handle: RePEc:inm:ortrsc:v:40:y:2006:i:2:p:189-199
    DOI: 10.1287/trsc.1050.0125
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.1050.0125
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.1050.0125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard E. Allsop, 1972. "Delay at a Fixed Time Traffic Signal---I: Theoretical Analysis," Transportation Science, INFORMS, vol. 6(3), pages 260-285, August.
    2. Mohan L. Chaudhry & Carl M. Harris & William G. Marchal, 1990. "Robustness of Rootfinding in Single-Server Queueing Models," INFORMS Journal on Computing, INFORMS, vol. 2(3), pages 273-286, August.
    3. Andrzej P. Tarko, 2000. "Random Queues in Signalized Road Networks," Transportation Science, INFORMS, vol. 34(4), pages 415-425, November.
    4. Heidemann, Dirk, 1994. "Queue length and delay distributions at traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 377-389, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hofleitner, Aude & Herring, Ryan & Bayen, Alexandre, 2012. "Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1097-1122.
    2. A. Oblakova & A. Al Hanbali & R. J. Boucherie & J. C. W. Ommeren & W. H. M. Zijm, 2019. "An exact root-free method for the expected queue length for a class of discrete-time queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 92(3), pages 257-292, August.
    3. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    4. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    5. M. A. A. Boon & A. J. E. M. Janssen & J. S. H. Leeuwaarden & R. W. Timmerman, 2019. "Pollaczek contour integrals for the fixed-cycle traffic-light queue," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 89-111, February.
    6. Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.
    7. Yang, Qiaoli & Shi, Zhongke, 2021. "The queue dynamics of protected/permissive left turns at pre-timed signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    8. Boon, Marko A.A. & van Leeuwaarden, Johan S.H., 2018. "Networks of fixed-cycle intersections," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 254-271.
    9. Comert, Gurcan, 2013. "Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data," European Journal of Operational Research, Elsevier, vol. 226(1), pages 67-76.
    10. A. J. E. M. Janssen & J. S. H. van Leeuwaarden, 2016. "Dominant poles and tail asymptotics in the critical Gaussian many-sources regime," Queueing Systems: Theory and Applications, Springer, vol. 84(3), pages 211-236, December.
    11. M. S. van den Broek & J. S. H. van Leeuwaarden & I. J. B. F. Adan & O. J. Boxma, 2006. "Bounds and Approximations for the Fixed-Cycle Traffic-Light Queue," Transportation Science, INFORMS, vol. 40(4), pages 484-496, November.
    12. Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
    13. António Pacheco & Maria Lurdes Simões Simões & Paula Milheiro-Oliveira, 2017. "Queues with Server Vacations as a Model for Pretimed Signalized Urban Traffic," Transportation Science, INFORMS, vol. 51(3), pages 841-851, August.
    14. Luo, Xiaoqian & Wang, Dianhai & Ma, Dongfang & Jin, Sheng, 2019. "Grouped travel time estimation in signalized arterials using point-to-point detectors," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 130-151.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohan L. Chaudhry & James J. Kim, 2016. "Analytically elegant and computationally efficient results in terms of roots for the $$GI^{X}/M/c$$ G I X / M / c queueing system," Queueing Systems: Theory and Applications, Springer, vol. 82(1), pages 237-257, February.
    2. P. Patrick Wang, 1993. "Static and dynamic scheduling of customer arrivals to a single‐server system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(3), pages 345-360, April.
    3. James J. Kim & Douglas G. Down & Mohan Chaudhry & Abhijit Datta Banik, 2022. "Difference Equations Approach for Multi-Server Queueing Models with Removable Servers," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1297-1321, September.
    4. S. K. Samanta & M. L. Chaudhry & A. Pacheco, 2016. "Analysis of B M A P/M S P/1 Queue," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 419-440, June.
    5. Mung, Gregory K. S. & Poon, Antonio C. K. & Lam, William H. K., 1996. "Distributions of queue lengths at fixed time traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 421-439, December.
    6. M. L. Chaudhry & Gagandeep Singh & U. C. Gupta, 2013. "A Simple and Complete Computational Analysis of MAP/R/1 Queue Using Roots," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 563-582, September.
    7. S. K. Samanta, 2020. "Waiting-time analysis of D-$${ BMAP}{/}G{/}1$$BMAP/G/1 queueing system," Annals of Operations Research, Springer, vol. 284(1), pages 401-413, January.
    8. Mohan Chaudhry & Veena Goswami, 2022. "The Geo / G a , Y /1/ N Queue Revisited," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    9. M. L. Chaudhry & A. D. Banik & A. Pacheco, 2017. "A simple analysis of the batch arrival queue with infinite-buffer and Markovian service process using roots method: $$ GI ^{[X]}/C$$ G I [ X ] / C - $$ MSP /1/\infty $$ M S P / 1 / ∞," Annals of Operations Research, Springer, vol. 252(1), pages 135-173, May.
    10. Miaomiao Yu & Yinghui Tang, 2022. "Analysis of a renewal batch arrival queue with a fault-tolerant server using shift operator method," Operational Research, Springer, vol. 22(3), pages 2831-2858, July.
    11. M. L. Chaudhry & Veena Goswami, 2019. "The Queue Geo/G/1/N + 1 Revisited," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 155-168, March.
    12. M. L. Chaudhry, 1992. "Computing stationary queueing‐time distributions of GI/D/1 and GI/D/c queues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(7), pages 975-996, December.
    13. Mohan Chaudhry & Abhijit Datta Banik & Sitaram Barik & Veena Goswami, 2023. "A Novel Computational Procedure for the Waiting-Time Distribution (In the Queue) for Bulk-Service Finite-Buffer Queues with Poisson Input," Mathematics, MDPI, vol. 11(5), pages 1-26, February.
    14. Pinai Linwong* & Nei Kato* & Yoshiaki Nemoto*, 2004. "A Polynomial Factorization Approach for the Discrete Time GIX/>G/1/K Queue," Methodology and Computing in Applied Probability, Springer, vol. 6(3), pages 277-291, September.
    15. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    16. Boon, Marko A.A. & van Leeuwaarden, Johan S.H., 2018. "Networks of fixed-cycle intersections," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 254-271.
    17. Comert, Gurcan & Cetin, Mecit, 2009. "Queue length estimation from probe vehicle location and the impacts of sample size," European Journal of Operational Research, Elsevier, vol. 197(1), pages 196-202, August.
    18. António Pacheco & Maria Lurdes Simões Simões & Paula Milheiro-Oliveira, 2017. "Queues with Server Vacations as a Model for Pretimed Signalized Urban Traffic," Transportation Science, INFORMS, vol. 51(3), pages 841-851, August.
    19. Giulio Cantarella & Antonino Vitetta, 2006. "The multi-criteria road network design problem in an urban area," Transportation, Springer, vol. 33(6), pages 567-588, November.
    20. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:40:y:2006:i:2:p:189-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.