IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v98y2017icp135-153.html
   My bibliography  Save this article

Optimization of vehicle and pedestrian signals at isolated intersections

Author

Listed:
  • Yu, Chunhui
  • Ma, Wanjing
  • Han, Ke
  • Yang, Xiaoguang

Abstract

In most traffic signal optimization problems, pedestrian traffic at an intersection receives minor consideration compared to vehicular traffic, and usually in the form of simplistic and exogenous constraints (e.g., minimum green time). This could render the resulting signal timings sub-optimal especially in dense urban areas with significant pedestrian traffic, or when two-stage pedestrian crosswalks are present. This paper proposes a convex (quadratic) programming approach to optimize traffic signal timings for an isolated intersection with one- and two-stage crosswalks, assuming undersaturated vehicular traffic condition. Both vehicle and pedestrian traffic are integrated into a unified framework, where the total weighted delay of pedestrians and vehicles at different types of crosswalks (i.e. one- or two-stage) is adopted as the objective function, and temporal and spatial constraints (e.g. signal phasing plan and spatial capacity of the refuge island) are explicitly formulated. A case study demonstrates the impacts of incorporating pedestrian delay as well as geometric and spatial constraints (e.g., available space on the refuge island) in the signal optimization. A further analysis shows that a two-stage crosswalk may outperform a one-stage crosswalk in terms of both vehicle and pedestrian delays in some circumstances.

Suggested Citation

  • Yu, Chunhui & Ma, Wanjing & Han, Ke & Yang, Xiaoguang, 2017. "Optimization of vehicle and pedestrian signals at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 135-153.
  • Handle: RePEc:eee:transb:v:98:y:2017:i:c:p:135-153
    DOI: 10.1016/j.trb.2016.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516300789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wong, C.K. & Heydecker, B.G., 2011. "Optimal allocation of turns to lanes at an isolated signal-controlled junction," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 667-681, May.
    2. Yin, Yafeng, 2008. "Robust optimal traffic signal timing," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 911-924, December.
    3. Little, John D. C. & Kelson, Mark D. & Gartner, Nathan H., 1981. "MAXBAND : a versatile program for setting signals on arteries and triangular networks," Working papers 1185-81., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. Silcock, J. P., 1997. "Designing signal-controlled junctions for group-based operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(2), pages 157-173, March.
    5. Ennio Cascetta & Mariano Gallo & Bruno Montella, 2006. "Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models," Annals of Operations Research, Springer, vol. 144(1), pages 301-328, April.
    6. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    7. Dion, Francois & Rakha, Hesham & Kang, Youn-Soo, 2004. "Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 99-122, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Zeinaly & Mahdi Sojoodi & Sadegh Bolouki, 2023. "A Resilient Intelligent Traffic Signal Control Scheme for Accident Scenario at Intersections via Deep Reinforcement Learning," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    2. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    3. Sun, Qipeng & He, Chen & Wang, Yongjie & Liu, Hang & Ma, Fei & Wei, Xiao, 2022. "Reducing violation behaviors of pedestrians considering group interests of travelers at signalized crosswalk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    4. Mohajerpoor, Reza & Saberi, Meead & Ramezani, Mohsen, 2019. "Analytical derivation of the optimal traffic signal timing: Minimizing delay variability and spillback probability for undersaturated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 45-68.
    5. Keyan Bai & Enjian Yao & Long Pan & Linze Li & Wei Chen, 2020. "Dynamic Crosswalk Signal Timing Optimization Model Considering Vehicle and Pedestrian Delays and Fuel Consumption Cost," Sustainability, MDPI, vol. 12(2), pages 1-9, January.
    6. Biao Yin & Monica Menendez & Kaidi Yang, 2021. "Joint Optimization of Intersection Control and Trajectory Planning Accounting for Pedestrians in a Connected and Automated Vehicle Environment," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    7. Serhii TURPAK & Vjacheslav TRUSHEVSKY & Olexiy KUZ’KIN & Sergey GRITCAY & Igor TARAN, 2021. "Improving The Efficiency Of Vehicle Operation And Its Environmental Friendliness Within The Controlled Crossings," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(3), pages 119-130, September.
    8. Zhou, Xuesong, 2017. "Recasting and optimizing intersection automation as a connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-and-bound search approach in phase-time-traffic hypernetworkAuthor-N," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 479-506.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    2. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    3. Zhao, Jing & Li, Peng, 2016. "An extended car-following model with consideration of speed guidance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 1-8.
    4. Chi-kwong Wong & Yiu-yin Lee, 2020. "Lane-Based Traffic Signal Simulation and Optimization for Preventing Overflow," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    5. Yu, Chunhui & Feng, Yiheng & Liu, Henry X. & Ma, Wanjing & Yang, Xiaoguang, 2018. "Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 89-112.
    6. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    7. Senlai Zhu & Ke Guo & Yuntao Guo & Huairen Tao & Quan Shi, 2019. "An Adaptive Signal Control Method with Optimal Detector Locations," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    8. Tan, Jiyuan & Li, Li & Li, Zhiheng & Zhang, Yi, 2013. "Distribution models for start-up lost time and effective departure flow rate," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 1-11.
    9. Memoli, Silvio & Cantarella, Giulio E. & de Luca, Stefano & Pace, Roberta Di, 2017. "Network signal setting design with stage sequence optimisation," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 20-42.
    10. Ma, Wanjing & Liu, Ye & Zhao, Jing & Wu, Ning, 2017. "Increasing the capacity of signalized intersections with left-turn waiting areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 181-196.
    11. Xuan, Yiguang & Daganzo, Carlos F. & Cassidy, Michael J., 2011. "Increasing the capacity of signalized intersections with separate left turn phases," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 769-781, June.
    12. Omid, M. Rouhani, 2013. "Queue Dissipation Shockwave Speed for Signalized Intersections," MPRA Paper 53161, University Library of Munich, Germany.
    13. Rouhani, Omid M., 2013. "Queue Dissipation Shockwave Speed– A Signalized Intersection Case Study," 54th Annual Transportation Research Forum, Annapolis, Maryland, March 21-23, 2013 206954, Transportation Research Forum.
    14. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    15. Farzaneh Montazeri & Fausto Errico & Luc Pellecuer, 2022. "Comparison of the Performance of Hybrid Traffic Signal Patterns and Conventional Alternatives When Accounting for Both Pedestrians and Vehicles," Sustainability, MDPI, vol. 14(20), pages 1-33, October.
    16. C. K. Wong & Yi Liu, 2017. "Lane-Based Optimization for Macroscopic Network Configuration Designs," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-18, July.
    17. Yu, Chunhui & Ma, Wanjing & Lo, Hong K. & Yang, Xiaoguang, 2015. "Optimization of mid-block pedestrian crossing network with discrete demands," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 103-121.
    18. Li, Xiang & Sun, Jian-Qiao, 2019. "Intersection multi-objective optimization on signal setting and lane assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1233-1246.
    19. Zhao, Jing & Yan, Jiachao & Wang, Jiawen, 2019. "Analysis of alternative treatments for left turn bicycles at tandem intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 314-328.
    20. Lee, Seunghyeon & Wong, S.C., 2017. "Group-based approach to predictive delay model based on incremental queue accumulations for adaptive traffic control systems," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:98:y:2017:i:c:p:135-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.