IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v98y2017icp1-20.html
   My bibliography  Save this article

Group-based approach to predictive delay model based on incremental queue accumulations for adaptive traffic control systems

Author

Listed:
  • Lee, Seunghyeon
  • Wong, S.C.

Abstract

In this study, we develop a mathematical framework to estimate lane-based incremental queue accumulations with group-based variables and a predictive model of lane-based control delay. Our objective is to establish the rolling horizon approach to lane-based control delay for group-based optimization of signal timings in adaptive traffic control systems. The challenges involved in this task include identification of the most appropriate incremental queue accumulations based on group-based variables for individual lanes to the queueing formation patterns and establishment of the rolling horizon procedure for predicting the future components of lane-based incremental queue accumulations in the time windows. For lane-based estimation of incremental queue accumulations, temporal and spatial information were collected on the basis of estimated lane-based queue lengths from our previous research to estimate lane-based incremental queue accumulations. We interpret the given signal plan as group-based variables, including the start and duration of the effective green time and the cycle time. Adjustment factors are defined to identify the characteristics of the control delay in a specific cycle and to clarify the relationship between group-based variables and the temporal information of queue lengths in the proposed estimation method. We construct the rolling horizon procedure based on Kalman filters with appropriate time windows. Lane-based queue lengths at an inflection point and adjustment factors in the previous cycle are used to estimate the adjustment factors, arrival rates, and discharge rates in the next cycle, in which the predictive computation is performed in the current cycle. In the simulations sets and the case study, the proposed model is robust and accurate for estimation of lane-based control delay under a wide range of traffic conditions. Adjustment factors play a significant role in increasing the accuracy of the proposed model and in classifying queueing patterns in a specific cycle. The Kalman filters enhance the accuracy of the predictions by minimizing the error terms caused by the fluctuation in traffic flow.

Suggested Citation

  • Lee, Seunghyeon & Wong, S.C., 2017. "Group-based approach to predictive delay model based on incremental queue accumulations for adaptive traffic control systems," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 1-20.
  • Handle: RePEc:eee:transb:v:98:y:2017:i:c:p:1-20
    DOI: 10.1016/j.trb.2016.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261516302338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. W. Ross & R. C. Sandys & J. L. Schlaefli, 1971. "A Computer Control Scheme for Critical-Intersection Control in an Urban Network," Transportation Science, INFORMS, vol. 5(2), pages 141-160, May.
    2. G. C. D'Ans & D. C. Gazis, 1976. "Optimal Control of Oversaturated Store-and-Forward Transportation Networks," Transportation Science, INFORMS, vol. 10(1), pages 1-19, February.
    3. Wong, S. C. & Yang, Hai, 1997. "Reserve capacity of a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 397-402, October.
    4. Wong, S. C., 1995. "Derivatives of the performance index for the traffic model from TRANSYT," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 303-327, October.
    5. Han, Ke & Gayah, Vikash V. & Piccoli, Benedetto & Friesz, Terry L. & Yao, Tao, 2014. "On the continuum approximation of the on-and-off signal control on dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 73-97.
    6. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    7. Smith, M. J., 1979. "The existence, uniqueness and stability of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 295-304, December.
    8. Smith, M. J., 1983. "The existence and calculation of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 291-303, August.
    9. Smith, M. J. & Ghali, M., 1990. "The dynamics of traffic assignment and traffic control: A theoretical study," Transportation Research Part B: Methodological, Elsevier, vol. 24(6), pages 409-422, December.
    10. Silcock, J. P., 1997. "Designing signal-controlled junctions for group-based operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(2), pages 157-173, March.
    11. Denos C. Gazis, 1964. "Optimum Control of a System of Oversaturated Intersections," Operations Research, INFORMS, vol. 12(6), pages 815-831, December.
    12. Michael C. Dunne & Renfrey B. Potts, 1964. "Algorithm for Traffic Control," Operations Research, INFORMS, vol. 12(6), pages 870-881, December.
    13. Wong, S. C., 1996. "Group-based optimisation of signal timings using the TRANSYT traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 217-244, June.
    14. Smith, M.J. & Liu, R. & Mounce, R., 2015. "Traffic control and route choice: Capacity maximisation and stability," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 863-885.
    15. M. J. Smith & T. van Vuren, 1993. "Traffic Equilibrium with Responsive Traffic Control," Transportation Science, INFORMS, vol. 27(2), pages 118-132, May.
    16. Smith, M. J., 1981. "Properties of a traffic control policy which ensure the existence of a traffic equilibrium consistent with the policy," Transportation Research Part B: Methodological, Elsevier, vol. 15(6), pages 453-462, December.
    17. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    18. Smith, M. J., 1979. "Traffic control and route-choice; a simple example," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 289-294, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control Part II: Implementation," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 376-397.
    2. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    3. Xinhua Mao & Changwei Yuan & Jiahua Gan & Jibiao Zhou, 2019. "Optimal Evacuation Strategy for Parking Lots Considering the Dynamic Background Traffic Flows," IJERPH, MDPI, vol. 16(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    2. Meneguzzer, Claudio, 1995. "An equilibrium route choice model with explicit treatment of the effect of intersections," Transportation Research Part B: Methodological, Elsevier, vol. 29(5), pages 329-356, October.
    3. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    4. Memoli, Silvio & Cantarella, Giulio E. & de Luca, Stefano & Pace, Roberta Di, 2017. "Network signal setting design with stage sequence optimisation," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 20-42.
    5. Castillo González, Rodrigo & Clempner, Julio B. & Poznyak, Alexander S., 2019. "Solving traffic queues at controlled-signalized intersections in continuous-time Markov games," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 283-297.
    6. Guo, Jianhua & Kong, Ye & Li, Zongzhi & Huang, Wei & Cao, Jinde & Wei, Yun, 2019. "A model and genetic algorithm for area-wide intersection signal optimization under user equilibrium traffic," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 92-104.
    7. Liu, Ronghui & Smith, Mike, 2015. "Route choice and traffic signal control: A study of the stability and instability of a new dynamical model of route choice and traffic signal control," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 123-145.
    8. David Levinson & Ajay Kumar, 1994. "Integrating Feedback into the Transportation Planning Mode," Working Papers 199404, University of Minnesota: Nexus Research Group.
    9. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    10. D’Acierno, Luca & Gallo, Mariano & Montella, Bruno, 2012. "An Ant Colony Optimisation algorithm for solving the asymmetric traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 217(2), pages 459-469.
    11. Smith, M.J. & Liu, R. & Mounce, R., 2015. "Traffic control and route choice: Capacity maximisation and stability," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 863-885.
    12. Ennio Cascetta & Mariano Gallo & Bruno Montella, 2006. "Models and algorithms for the optimization of signal settings on urban networks with stochastic assignment models," Annals of Operations Research, Springer, vol. 144(1), pages 301-328, April.
    13. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    14. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    15. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.
    16. Wong, S. C. & Wong, W. T. & Leung, C. M. & Tong, C. O., 2002. "Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 291-312, May.
    17. Evers, Ruth & Proost, Stef, 2015. "Optimizing intersections," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 100-119.
    18. Cipriani, Ernesto & Fusco, Gaetano, 2004. "Combined signal setting design and traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 155(3), pages 569-583, June.
    19. Claudio Meneguzzer, 1998. "Stochastic user equilibrium assignment with traffic-responsive signal control," ERSA conference papers ersa98p337, European Regional Science Association.
    20. Chi-kwong Wong & Yiu-yin Lee, 2020. "Lane-Based Traffic Signal Simulation and Optimization for Preventing Overflow," Mathematics, MDPI, vol. 8(8), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:98:y:2017:i:c:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.