IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/1257569.html
   My bibliography  Save this article

Lane-Based Optimization for Macroscopic Network Configuration Designs

Author

Listed:
  • C. K. Wong
  • Yi Liu

Abstract

Lane markings (arrows) at individual intersections serve as interfaces to connect upstream and downstream intersections in signal-controlled networks. Demand flows from origins to destinations may need to pass through a series of intersections. If lane markings are not well established to ban turns at intersections, then paths connecting origin and destination (OD) pairs could be inefficient. Due to indirect connections, road users need to take longer paths to reach their destinations. Conventionally, network configurations are fixed inputs for network analysis. In the present study, concepts of the lane-based designs for individual signalized intersections are extended for signal-controlled network designs. Taking OD demand flows as inputs, the proposed algorithm will optimize all lane markings and assigned lane flows on approach lanes. Paths (flows) will then be optimized by linking up the optimized lane markings across upstream and downstream intersections. Traffic signal settings at individual intersections will be optimized simultaneously by maximizing the reserve capacity for the entire OD demand flow matrix. The problem is formulated as a Binary-Mixed-Integer-Linear-Program (BMILP) and a standard branch-and-bound routine is applied to solve for global optimum solutions. A numerical example using a 4-intersection network will be given to demonstrate the effectiveness of the proposed design methodology.

Suggested Citation

  • C. K. Wong & Yi Liu, 2017. "Lane-Based Optimization for Macroscopic Network Configuration Designs," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-18, July.
  • Handle: RePEc:hin:jnddns:1257569
    DOI: 10.1155/2017/1257569
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/1257569.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/1257569.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/1257569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wong, S. C. & Yang, Hai, 1997. "Reserve capacity of a signal-controlled road network," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 397-402, October.
    2. Wong, C.K. & Heydecker, B.G., 2011. "Optimal allocation of turns to lanes at an isolated signal-controlled junction," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 667-681, May.
    3. Wong, S. C. & Yang, Chao & Lo, Hong K., 2001. "A path-based traffic assignment algorithm based on the TRANSYT traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 163-181, February.
    4. Wong, S. C., 1996. "Group-based optimisation of signal timings using the TRANSYT traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 217-244, June.
    5. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    6. Meng, Q. & Yang, H. & Bell, M. G. H., 2001. "An equivalent continuously differentiable model and a locally convergent algorithm for the continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 83-105, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi-kwong Wong & Yiu-yin Lee, 2020. "Lane-Based Traffic Signal Simulation and Optimization for Preventing Overflow," Mathematics, MDPI, vol. 8(8), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    2. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    3. Chi-kwong Wong & Yiu-yin Lee, 2020. "Lane-Based Traffic Signal Simulation and Optimization for Preventing Overflow," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    4. Lee, Seunghyeon & Wong, S.C., 2017. "Group-based approach to predictive delay model based on incremental queue accumulations for adaptive traffic control systems," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 1-20.
    5. Wang, Jian & He, Xiaozheng & Peeta, Srinivas & Wang, Wei, 2022. "Globally convergent line search algorithm with Euler-based step size-determination method for continuous network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 119-144.
    6. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
    7. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    8. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    9. Chow, Andy H.F. & Lo, Hong K., 2007. "Sensitivity analysis of signal control with physical queuing: Delay derivatives and an application," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 462-477, May.
    10. Hua Wang & Xiaoning Zhang, 2017. "Game theoretical transportation network design among multiple regions," Annals of Operations Research, Springer, vol. 249(1), pages 97-117, February.
    11. Memoli, Silvio & Cantarella, Giulio E. & de Luca, Stefano & Pace, Roberta Di, 2017. "Network signal setting design with stage sequence optimisation," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 20-42.
    12. D’Acierno, Luca & Gallo, Mariano & Montella, Bruno, 2012. "An Ant Colony Optimisation algorithm for solving the asymmetric traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 217(2), pages 459-469.
    13. Wong, C.K. & Heydecker, B.G., 2011. "Optimal allocation of turns to lanes at an isolated signal-controlled junction," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 667-681, May.
    14. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    15. Zhao, Jing & Li, Peng, 2016. "An extended car-following model with consideration of speed guidance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 1-8.
    16. Wang, Yu & Liu, Haoxiang & Fan, Yinchao & Ding, Jianxun & Long, Jiancheng, 2022. "Large-scale multimodal transportation network models and algorithms-Part II: Network capacity and network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    17. Farzaneh Montazeri & Fausto Errico & Luc Pellecuer, 2022. "Comparison of the Performance of Hybrid Traffic Signal Patterns and Conventional Alternatives When Accounting for Both Pedestrians and Vehicles," Sustainability, MDPI, vol. 14(20), pages 1-33, October.
    18. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    19. Yu, Chunhui & Ma, Wanjing & Han, Ke & Yang, Xiaoguang, 2017. "Optimization of vehicle and pedestrian signals at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 135-153.
    20. Wei Huang & Guangming Xu & Hong K. Lo, 2020. "Pareto-Optimal Sustainable Transportation Network Design under Spatial Queuing," Networks and Spatial Economics, Springer, vol. 20(3), pages 637-673, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:1257569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.