IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v173y2023ics0965856423001222.html
   My bibliography  Save this article

Impacts of bus overtaking policies on the capacity of bus stops

Author

Listed:
  • Hu, Sangen
  • Shen, Minyu
  • Gu, Weihua

Abstract

Long bus queues at busy stops plague bus systems in many cities. Since berths are laid-out in tandem, buses’ overtaking maneuvers are often prohibited or restricted, which can significantly reduce a bus stop’s discharge capacity. When overtaking is allowed, aggressive drivers may perform disruptive oblique insertion maneuvers that would undermine stop capacity and compromise safety. This paper develops parsimonious yet realistic simulation models to examine the impacts of different overtaking policies on bus-stop capacity. Key realistic features are considered, including the oblique insertions resulting from overtaking, impacts of a nearby traffic signal, and bus traffic characteristics (reaction and move-up times). Extensive numerical experiments unveil many new findings. Some are at odds with those reported by previous studies. In addition, we examine two strategies that can improve the stop capacity without incurring disruptive oblique insertions. Practical implications of our findings are discussed, especially on choosing the most productive overtaking policy and means to minimize the capacity lost to buses’ mutual blockage at stops. These implications have broad applications to various types of bus stops.

Suggested Citation

  • Hu, Sangen & Shen, Minyu & Gu, Weihua, 2023. "Impacts of bus overtaking policies on the capacity of bus stops," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:transa:v:173:y:2023:i:c:s0965856423001222
    DOI: 10.1016/j.tra.2023.103702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423001222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delgado, Felipe & Munoz, Juan Carlos & Giesen, Ricardo, 2012. "How much can holding and/or limiting boarding improve transit performance?," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1202-1217.
    2. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    3. Qingyu Luo & Tianyao Zheng & Wenjing Wu & Hongfei Jia & Jin Li, 2018. "Modeling the effect of bus stops on capacity of curb lane," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(03), pages 1-20, March.
    4. Tirachini, Alejandro, 2014. "The economics and engineering of bus stops: Spacing, design and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 37-57.
    5. Daganzo, Carlos F., 2006. "In traffic flow, cellular automata = kinematic waves," Transportation Research Part B: Methodological, Elsevier, vol. 40(5), pages 396-403, June.
    6. Yao, Di & Xu, Liqun & Zhang, Chunqin & Li, Jinpei, 2021. "Revisiting the interactions between bus service quality, car ownership and mode use: A case study in Changzhou, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 329-344.
    7. Gu, Weihua & Gayah, Vikash V. & Cassidy, Michael J. & Saade, Nathalie, 2014. "On the impacts of bus stops near signalized intersections: Models of car and bus delays," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 123-140.
    8. Gu, Weihua & Cassidy, Michael J. & Li, Yuwei, 2012. "On the capacity of highway checkpoints: Models for unconventional configurations," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1308-1321.
    9. Shen, Minyu & Gu, Weihua & Hu, Sangen & Cheng, Han, 2019. "Capacity approximations for near- and far-side bus stops in dedicated bus lanes," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 94-120.
    10. Gu, Weihua & Li, Yuwei & Cassidy, Michael J. & Griswold, Julia B., 2011. "On the capacity of isolated, curbside bus stops," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 714-723, May.
    11. Feng, Xuejun & Hu, Sangen & Gu, Weihua & Jin, Xin & Lu, Yuan, 2020. "A simulation-based approach for assessing seaside infrastructure improvement measures for large marine crude oil terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    12. Weihua Gu & Michael J. Cassidy & Yuwei Li, 2015. "Models of Bus Queueing at Curbside Stops," Transportation Science, INFORMS, vol. 49(2), pages 204-212, May.
    13. Lu Liu & Zhanglei Bian & Qinghui Nie, 2022. "Finding the Optimal Bus-Overtaking Rules for Bus Stops with Two Tandem Berths," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    14. Ma, Wanjing & Liu, Ye & Zhao, Jing & Wu, Ning, 2017. "Increasing the capacity of signalized intersections with left-turn waiting areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 181-196.
    15. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou, 2017. "Modelling bus bunching and holding control with vehicle overtaking and distributed passenger boarding behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 175-197.
    16. Gu, Weihua & Cassidy, Michael J., 2013. "Maximizing bus discharge flows from multi-berth stops by regulating exit maneuvers," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 254-264.
    17. Nguyen-Phuoc, Duy Q. & Currie, Graham & De Gruyter, Chris & Kim, Inhi & Young, William, 2018. "Modelling the net traffic congestion impact of bus operations in Melbourne," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 1-12.
    18. Bomin Bian & Michael Pinedo & Ning Zhu & Shoufeng Ma, 2019. "Performance Analysis of Overtaking Maneuvers at Bus Stops with Tandem Berths," Transportation Science, INFORMS, vol. 53(2), pages 597-618, March.
    19. Daganzo, Carlos F. & Pilachowski, Josh, 2011. "Reducing bunching with bus-to-bus cooperation," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 267-277, January.
    20. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 61-81.
    21. Phillips, William & del Rio, Andrés & Muñoz, Juan Carlos & Delgado, Felipe & Giesen, Ricardo, 2015. "Quantifying the effects of driver non-compliance and communication system failure in the performance of real-time bus control strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 463-472.
    22. Gu, Weihua & Cassidy, Michael J. & Gayah, Vikash V. & Ouyang, Yanfeng, 2013. "Mitigating negative impacts of near-side bus stops on cars," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 42-56.
    23. Rodrigo Fernandez & Rosemarie Planzer, 2002. "On the capacity of bus transit systems," Transport Reviews, Taylor & Francis Journals, vol. 22(3), pages 267-293, January.
    24. Rodrigo Fernandez & Nick Tyler, 2005. "Effect of Passenger--Bus--Traffic Interactions on Bus Stop Operations," Transportation Planning and Technology, Taylor & Francis Journals, vol. 28(4), pages 273-292, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minyu Shen & Weihua Gu & Michael J. Cassidy & Yongjie Lin & Wei Ni, 2024. "A vicious cycle along busy bus corridors and how to abate it," Papers 2403.08230, arXiv.org.
    2. Shen, Minyu & Gu, Weihua & Hu, Sangen & Cheng, Han, 2019. "Capacity approximations for near- and far-side bus stops in dedicated bus lanes," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 94-120.
    3. Bomin Bian & Michael Pinedo & Ning Zhu & Shoufeng Ma, 2019. "Performance Analysis of Overtaking Maneuvers at Bus Stops with Tandem Berths," Transportation Science, INFORMS, vol. 53(2), pages 597-618, March.
    4. Lu Liu & Zhanglei Bian & Qinghui Nie, 2022. "Finding the Optimal Bus-Overtaking Rules for Bus Stops with Two Tandem Berths," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    5. Gkiotsalitis, K. & Cats, O., 2021. "At-stop control measures in public transport: Literature review and research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    6. Weihua Gu & Michael J. Cassidy & Yuwei Li, 2015. "Models of Bus Queueing at Curbside Stops," Transportation Science, INFORMS, vol. 49(2), pages 204-212, May.
    7. Chow, Andy H.F. & Li, Shuai & Zhong, Renxin, 2017. "Multi-objective optimal control formulations for bus service reliability with traffic signals," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 248-268.
    8. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    9. Zhou, Chang & Tian, Qiong & Wang, David Z.W., 2022. "A novel control strategy in mitigating bus bunching: Utilizing real-time information," Transport Policy, Elsevier, vol. 123(C), pages 1-13.
    10. Bai, Qiaowen & Ong, Ghim Ping, 2023. "Similarity-based bus services assignment with capacity constraint for staggered bus stops," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    11. Nima Dadashzadeh & Murat Ergun, 2018. "Spatial bus priority schemes, implementation challenges and needs: an overview and directions for future studies," Public Transport, Springer, vol. 10(3), pages 545-570, December.
    12. Dai, Zhuang & Liu, Xiaoyue Cathy & Chen, Zhuo & Guo, Renyong & Ma, Xiaolei, 2019. "A predictive headway-based bus-holding strategy with dynamic control point selection: A cooperative game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 29-51.
    13. Petit, Antoine & Lei, Chao & Ouyang, Yanfeng, 2019. "Multiline Bus Bunching Control via Vehicle Substitution," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 68-86.
    14. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    15. Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Mixed logical dynamical modeling and hybrid model predictive control of public transport operations," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 325-345.
    16. Tirachini, Alejandro, 2014. "The economics and engineering of bus stops: Spacing, design and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 37-57.
    17. Xuemei Zhou & Yehan Wang & Xiangfeng Ji & Caitlin Cottrill, 2019. "Coordinated Control Strategy for Multi-Line Bus Bunching in Common Corridors," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    18. Dong Liu & Feng Xiao & Jian Luo & Fan Yang, 2023. "Deep Reinforcement Learning-Based Holding Control for Bus Bunching under Stochastic Travel Time and Demand," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    19. Arkadiusz Drabicki & Rafał Kucharski & Oded Cats, 2023. "Mitigating bus bunching with real-time crowding information," Transportation, Springer, vol. 50(3), pages 1003-1030, June.
    20. Liang, Shidong & He, Shengxue & Zhang, Hu & Ma, Minghui, 2021. "Optimal holding time calculation algorithm to improve the reliability of high frequency bus route considering the bus capacity constraint," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:173:y:2023:i:c:s0965856423001222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.