IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v171y2021ics0040162521003747.html
   My bibliography  Save this article

Bulk storage technologies in imperfect electricity markets under time-of-use pricing: Implications for the environment and social welfare

Author

Listed:
  • Wesseh, Presley K.
  • Lin, Boqiang

Abstract

It is presumed that energy storage will play an important role in absorbing variable renewable energy into power systems and may therefore be critical for decarbonizing the electricity sector. However, the conditions under which storage devices can successfully interact with other schemes of competing objectives are still poorly understood. Taking pumped hydro storage (PHS) as a specific example of bulk storage technologies, we contribute towards this gap by adopting a game-theoretic model of the electricity market to study the effects of electricity storage systems on CO2 emissions and social welfare considering time-of-use (TOU) pricing and an electricity market where firms may be able to exert market power. We show that storage operation is completely abandoned when market power is exerted. In addition, when there is a reverse order between renewable energy output and peak load, TOU pricing mechanism provides better opportunities for emissions reduction than storage devices although a synergy could be achieved. The outlook for social welfare is negative, albeit marginal, which is due to zero profits for producers and slight losses to consumer rent. These results have implications for economic policy and could stimulate new debate in the literature.

Suggested Citation

  • Wesseh, Presley K. & Lin, Boqiang, 2021. "Bulk storage technologies in imperfect electricity markets under time-of-use pricing: Implications for the environment and social welfare," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:tefoso:v:171:y:2021:i:c:s0040162521003747
    DOI: 10.1016/j.techfore.2021.120942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162521003747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2021.120942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).
    2. Lihui Zhang & He Xin & Jing Wu & Liwei Ju & Zhongfu Tan, 2017. "A Multiobjective Robust Scheduling Optimization Mode for Multienergy Hybrid System Integrated by Wind Power, Solar Photovoltaic Power, and Pumped Storage Power," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-15, August.
    3. Yong-xiu He & Yue-xia Pang & Jie Guan, 2017. "A TOU Pricing Mechanism to Promote Renewable Energy Consumption: The Case of the Western Inner Mongolia Grid in China," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-16, September.
    4. Wesseh, Presley K. & Lin, Boqiang, 2018. "Optimal carbon taxes for China and implications for power generation, welfare, and the environment," Energy Policy, Elsevier, vol. 118(C), pages 1-8.
    5. Ferris, Michael C. & Munson, Todd S., 2000. "Complementarity problems in GAMS and the PATH solver," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 165-188, February.
    6. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    7. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    8. Tang, Renbo & Yang, Jiandong & Yang, Weijia & Zou, Jin & Lai, Xu, 2019. "Dynamic regulation characteristics of pumped-storage plants with two generating units sharing common conduits and busbar for balancing variable renewable energy," Renewable Energy, Elsevier, vol. 135(C), pages 1064-1077.
    9. Chang, Chia-Lin & Mai, Te-Ke & McAleer, Michael, 2019. "Establishing national carbon emission prices for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 1-16.
    10. Schweizer, Vanessa J. & Morgan, M. Granger, 2016. "Bounding US electricity demand in 2050," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 215-223.
    11. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & He, Gang & Zheng, Yanan, 2017. "An integrated source-grid-load planning model at the macro level: Case study for China's power sector," Energy, Elsevier, vol. 126(C), pages 231-246.
    12. Jinjin Gao & Yuan Zheng & Jianming Li & Xiaoming Zhu & Kan Kan, 2018. "Optimal Model for Complementary Operation of a Photovoltaic-Wind-Pumped Storage System," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-9, December.
    13. Ming, Zeng & Kun, Zhang & Daoxin, Liu, 2013. "Overall review of pumped-hydro energy storage in China: Status quo, operation mechanism and policy barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 35-43.
    14. Barbour, Edward & Wilson, I.A. Grant & Radcliffe, Jonathan & Ding, Yulong & Li, Yongliang, 2016. "A review of pumped hydro energy storage development in significant international electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 421-432.
    15. Lin, Boqiang & Wesseh, Presley K., 2020. "On the economics of carbon pricing: Insights from econometric modeling with industry-level data," Energy Economics, Elsevier, vol. 86(C).
    16. Frederic Murphy & Axel Pierru & Yves Smeers, 2016. "A Tutorial on Building Policy Models as Mixed-Complementarity Problems," Interfaces, INFORMS, vol. 46(6), pages 465-481, December.
    17. Ventosa, Mariano & Baillo, Alvaro & Ramos, Andres & Rivier, Michel, 2005. "Electricity market modeling trends," Energy Policy, Elsevier, vol. 33(7), pages 897-913, May.
    18. Sun, Kaiqi & Li, Ke-Jun & Pan, Jiuping & Liu, Yong & Liu, Yilu, 2019. "An optimal combined operation scheme for pumped storage and hybrid wind-photovoltaic complementary power generation system," Applied Energy, Elsevier, vol. 242(C), pages 1155-1163.
    19. Castagneto Gissey, Giorgio & Subkhankulova, Dina & Dodds, Paul E. & Barrett, Mark, 2019. "Value of energy storage aggregation to the electricity system," Energy Policy, Elsevier, vol. 128(C), pages 685-696.
    20. Wolf-Peter Schill & Claudia Kemfert, 2011. "Modeling Strategic Electricity Storage: The Case of Pumped Hydro Storage in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-88.
    21. Weiwei Yao & Changhong Deng & Dinglin Li & Man Chen & Peng Peng & Hao Zhang, 2019. "Optimal Sizing of Seawater Pumped Storage Plant with Variable-Speed Units Considering Offshore Wind Power Accommodation," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    22. Li, Yun & Li, Yanbin & Ji, Pengfei & Yang, Jing, 2015. "Development of energy storage industry in China: A technical and economic point of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 805-812.
    23. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1205-1230.
    24. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wesseh, Presley K. & Benjamin, Nelson I. & Lin, Boqiang, 2022. "The coordination of pumped hydro storage, electric vehicles, and climate policy in imperfect electricity markets: Insights from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Lin, Boqiang & Chen, Jiaying & Wesseh, Presley K., 2022. "Peak-valley tariffs and solar prosumers: Why renewable energy policies should target local electricity markets," Energy Policy, Elsevier, vol. 165(C).
    3. Okorie, David Iheke & Wesseh, Presley K., 2023. "Climate agreements and carbon intensity: Towards increased production efficiency and technical progress?," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 300-313.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesseh, Presley K. & Benjamin, Nelson I. & Lin, Boqiang, 2022. "The coordination of pumped hydro storage, electric vehicles, and climate policy in imperfect electricity markets: Insights from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    4. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    5. Mensah, Johnson Herlich Roslee & Santos, Ivan Felipe Silva dos & Raimundo, Danielle Rodrigues & Costa de Oliveira Botan, Maria Cláudia & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio, 2022. "Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir," Renewable Energy, Elsevier, vol. 199(C), pages 320-334.
    6. Megy, Camille & Massol, Olivier, 2023. "Is Power-to-Gas always beneficial? The implications of ownership structure," Energy Economics, Elsevier, vol. 128(C).
    7. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    8. Massol, Olivier & Rifaat, Omer, 2018. "Phasing out the U.S. Federal Helium Reserve: Policy insights from a world helium model," Resource and Energy Economics, Elsevier, vol. 54(C), pages 186-211.
    9. Wolf-Peter Schill & Claudia Kemfert, 2011. "Modeling Strategic Electricity Storage: The Case of Pumped Hydro Storage in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-88.
    10. Jan Abrell & Hannes Weigt, 2012. "Combining Energy Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 377-401, September.
    11. Kamiński, Jacek, 2014. "A blocked takeover in the Polish power sector: A model-based analysis," Energy Policy, Elsevier, vol. 66(C), pages 42-52.
    12. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Andrade Furtado, Gilton Carlos de & Amarante Mesquita, André Luiz & Morabito, Alessandro & Hendrick, Patrick & Hunt, Julian D., 2020. "Using hydropower waterway locks for energy storage and renewable energies integration," Applied Energy, Elsevier, vol. 275(C).
    14. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    15. Chen, Jing & Rozelle, Scott, 2003. "Market Emergence And The Rise And Fall Of Backyard Hog Production In China," 2003 Annual meeting, July 27-30, Montreal, Canada 21969, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Gambardella, Christian & Pahle, Michael, 2018. "Time-varying electricity pricing and consumer heterogeneity: Welfare and distributional effects with variable renewable supply," Energy Economics, Elsevier, vol. 76(C), pages 257-273.
    17. de Frutos Cachorro, Julia & Willeghems, Gwen & Buysse, Jeroen, 2020. "Exploring investment potential in a context of nuclear phase-out uncertainty: Perfect vs. imperfect electricity markets," Energy Policy, Elsevier, vol. 144(C).
    18. Vasileios Kitsikoudis & Pierre Archambeau & Benjamin Dewals & Estanislao Pujades & Philippe Orban & Alain Dassargues & Michel Pirotton & Sebastien Erpicum, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics," Energies, MDPI, vol. 13(14), pages 1-16, July.
    19. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    20. Rioux, Bertrand & Galkin, Philipp & Murphy, Frederic & Feijoo, Felipe & Pierru, Axel & Malov, Artem & Li, Yan & Wu, Kang, 2019. "The economic impact of price controls on China's natural gas supply chain," Energy Economics, Elsevier, vol. 80(C), pages 394-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:171:y:2021:i:c:s0040162521003747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.