IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v88y2021ics0739885920301931.html
   My bibliography  Save this article

Appropriateness of the “small-scale corridor terminals” scheme for rail-road combined transport: Evidence from the Brenner axis

Author

Listed:
  • Cavallaro, Federico
  • Nocera, Silvio
  • Sommacal, Giulia

Abstract

Rail-Road Combined Transport (CT) is a well-known issue for freight mobility: it is generally considered as a valid solution to reduce externalities without curbing mobility, but it often lacks adequate infrastructures and has high costs for operators. Hence, in most cases road continues to be the preferred solution. This condition is valid especially in the Alps, due to its morphological and infrastructural characteristics. To increase the attractiveness of CT in the Alpine context, this paper discusses the appropriateness of introducing a “small-scale corridor terminals” scheme along Brenner, i.e. the transalpine axis with the highest freight volumes, by assessing the opportunity of a new intermodal terminal in the Italian region of South Tyrol as part of an integrated system. The expectations of local firms and the development of alternative scenarios indicate that the geographical distribution is fragmented, and the potential demand is currently not sufficient to justify an investment with public funds. Thus, the proposed scheme seems not suitable for this context. At the same time, our analysis underscores the need to implement other policies to reorganise the freight movement at Brenner. An effective coordination with the neighbouring and underused terminal of Trento may be a first step towards this goal.

Suggested Citation

  • Cavallaro, Federico & Nocera, Silvio & Sommacal, Giulia, 2021. "Appropriateness of the “small-scale corridor terminals” scheme for rail-road combined transport: Evidence from the Brenner axis," Research in Transportation Economics, Elsevier, vol. 88(C).
  • Handle: RePEc:eee:retrec:v:88:y:2021:i:c:s0739885920301931
    DOI: 10.1016/j.retrec.2020.100995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885920301931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2020.100995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wiegmans, Bart & Witte, Patrick, 2017. "Efficiency of inland waterway container terminals: Stochastic frontier and data envelopment analysis to analyze the capacity design- and throughput efficiency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 12-21.
    2. Rob Konings & Hugo Priemus & Peter Nijkamp (ed.), 2008. "The Future of Intermodal Freight Transport," Books, Edward Elgar Publishing, number 3738.
    3. Fredrik Bärthel & Johan Woxenius, 2004. "Developing intermodal transport for small flows over short distances," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(5), pages 403-424, October.
    4. Feo, María & Espino, Raquel & García, Leandro, 2011. "An stated preference analysis of Spanish freight forwarders modal choice on the south-west Europe Motorway of the Sea," Transport Policy, Elsevier, vol. 18(1), pages 60-67, January.
    5. Racunica, Illia & Wynter, Laura, 2005. "Optimal location of intermodal freight hubs," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 453-477, June.
    6. Arne Jensen, 2008. "Designing Intermodal Transport Systems: A Conceptual and Methodological Framework," Chapters, in: Rob Konings & Hugo Priemus & Peter Nijkamp (ed.), The Future of Intermodal Freight Transport, chapter 10, Edward Elgar Publishing.
    7. Valerio Gatta & Edoardo Marcucci, 2016. "Stakeholder-specific data acquisition and urban freight policy evaluation: evidence, implications and new suggestions," Transport Reviews, Taylor & Francis Journals, vol. 36(5), pages 585-609, September.
    8. Kurtuluş, Ercan & Çetin, İsmail Bilge, 2020. "Analysis of modal shift potential towards intermodal transportation in short-distance inland container transport," Transport Policy, Elsevier, vol. 89(C), pages 24-37.
    9. Johan Woxenius & Fredrik Bärthel, 2008. "Intermodal Road–Rail Transport in the European Union," Chapters, in: Rob Konings & Hugo Priemus & Peter Nijkamp (ed.), The Future of Intermodal Freight Transport, chapter 2, Edward Elgar Publishing.
    10. Bruzzone, Francesco & Cavallaro, Federico & Nocera, Silvio, 2021. "The integration of passenger and freight transport for first-last mile operations," Transport Policy, Elsevier, vol. 100(C), pages 31-48.
    11. Tadić, Snežana & Krstić, Mladen & Brnjac, Nikolina, 2019. "Selection of efficient types of inland intermodal terminals," Journal of Transport Geography, Elsevier, vol. 78(C), pages 170-180.
    12. Dukkanci, Okan & Peker, Meltem & Kara, Bahar Y., 2019. "Green hub location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 116-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    2. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    3. Flitsch, Verena & Brümmerstedt, Katrin, 2015. "Freight Transport Modelling of Container Hinterland Supply Chains," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Blecker, Thorsten & Kersten, Wolfgang & Ringle, Christian M. (ed.), Operational Excellence in Logistics and Supply Chains: Optimization Methods, Data-driven Approaches and Security Insights. Proceedings of the Hamburg , volume 22, pages 233-266, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Santos, Alexandre Borges & Sproesser, Renato Luiz & Batalha, Mário Otávio, 2018. "Exploring strategic characteristics of intermodal grain terminals: Empirical evidence from Brazil," Journal of Transport Geography, Elsevier, vol. 66(C), pages 259-267.
    5. Lupi, Marino & Farina, Alessandro & Orsi, Denise & Pratelli, Antonio, 2017. "The capability of Motorways of the Sea of being competitive against road transport. The case of the Italian mainland and Sicily," Journal of Transport Geography, Elsevier, vol. 58(C), pages 9-21.
    6. Tapia, Rodrigo Javier & dos Santos Senna, Luiz Afonso & Larranaga, Ana Margarita & Cybis, Helena Beatriz Bettella, 2019. "Joint mode and port choice for soy production in Buenos Aires province, Argentina," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 121(C), pages 100-118.
    7. El Mehdi Ibnoulouafi & Mustapha Oudani & Tarik Aouam & Mounir Ghogho, 2022. "Intermodal Green p-Hub Median Problem with Incomplete Hub-Network," Sustainability, MDPI, vol. 14(18), pages 1-29, September.
    8. Behrends, Sönke, 2017. "Burden or opportunity for modal shift? – Embracing the urban dimension of intermodal road-rail transport," Transport Policy, Elsevier, vol. 59(C), pages 10-16.
    9. Kurtuluş, Ercan & Çetin, İsmail Bilge, 2020. "Analysis of modal shift potential towards intermodal transportation in short-distance inland container transport," Transport Policy, Elsevier, vol. 89(C), pages 24-37.
    10. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    11. Nam Seok Kim & Byungkyu Park & Kang-Dae Lee, 2016. "A knowledge based freight management decision support system incorporating economies of scale: multimodal minimum cost flow optimization approach," Information Technology and Management, Springer, vol. 17(1), pages 81-94, March.
    12. Bergantino, Angela S. & Bierlaire, Michel & Catalano, Mario & Migliore, Marco & Amoroso, Salvatore, 2013. "Taste heterogeneity and latent preferences in the choice behaviour of freight transport operators," Transport Policy, Elsevier, vol. 30(C), pages 77-91.
    13. Wilmsmeier, Gordon & Monios, Jason & Lambert, Bruce, 2011. "The directional development of intermodal freight corridors in relation to inland terminals," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1379-1386.
    14. Shalini Kurapati & Ioanna Kourounioti & Heide Lukosch & Lóránt Tavasszy & Alexander Verbraeck, 2018. "Fostering Sustainable Transportation Operations through Corridor Management: A Simulation Gaming Approach," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    15. Sandberg-Hanssen, Thor-Erik & Mathisen, Terje Andreas, 2011. "Factors facilitating intermodal transport of perishable goods - Transport purchaser’s viewpoint," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 75-89.
    16. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao, 2019. "Reliability of a stochastic intermodal logistics network under spoilage and time considerations," Annals of Operations Research, Springer, vol. 277(1), pages 95-118, June.
    17. Morales-Fusco, Pau & Grau, Marc & Saurí, Sergi, 2018. "Effects of RoPax shipping line strategies on freight price and transporter’s choice. Policy implications for promoting MoS," Transport Policy, Elsevier, vol. 67(C), pages 67-76.
    18. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    19. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    20. Lu, Changxiang & Ye, Yong & Fang, Yongjun & Fang, Jiaqi, 2023. "An optimal control theory approach for freight structure path evolution post-COVID-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).

    More about this item

    Keywords

    Combined transport; Intermodal terminal; Stakeholders' analysis; Brenner corridor;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:88:y:2021:i:c:s0739885920301931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.