IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v9y2005i6p638-645.html
   My bibliography  Save this article

Exergy analysis of domestic-scale solar water heaters

Author

Listed:
  • Xiaowu, Wang
  • Ben, Hua

Abstract

Solar water heater is the most popular means of solar energy utilization because of technological feasibility and economic attraction compared with other kinds of solar energy utilization. Earlier assessments of domestic-scale solar water heaters were based on the first thermodynamic law. However, this kind of assessment cannot perfectly describe the performance of solar water heaters, since the essence of energy utilization is to extract available energy as much as possible. So, it is necessary to evaluate domestic-scale solar water heaters based on the second thermodynamic law. No matter the technology process, from the property of energy utilization perspective, we can separate the technology process into three intimately related sub-procedures, namely conversion procedure, utilization procedure, and recycling procedure. An energy analysis entitled 'Three Procedure Theory' can be conveniently conducted as presented by Professor Hua Ben. Compared with other theories of energy analysis, three procedure theory exhibits great advantages. The utilization procedure puts forth requirement for the design of parameters in conversion procedure and sets up limits in the consideration of recycling procedure. Of course, under specific conditions, the utilization procedure also receives feedback from other procedures. Three procedure theory furnishes us a good platform to perform energy analysis. The study in this paper is based on three procedure theory. Exergy analysis is conducted with the aim of providing some methods to save cost and keep the efficiency of domestic-scale solar water heater to desired extent and at the same time figuring out related exergy losses. From this survey, it is shown that for an ordinary thermally insulated domestic-scale solar water heater, Dju (exergy losses due to imperfectly thermal insulation in collector) and DjR (exergy losses due to imperfectly thermal insulation in storage barrel) cannot be avoided. Dku (exergy losses due to irreversibility in collector) is mainly caused by irreversibility of heat transfer and DkR (exergy losses due to irreversibility in storage barrel) is dominated by the mixing of water at different temperature. Dku acts as the driving force for the system while DkR is of little contribution. A good design of storage barrel with little DkR will go a long way in improving exergy efficiency. An equation for computing DkR is presented. For the collector, which is the core of the domestic-scale solar water heater, a judicious choice of width of plate W and layer number of cover is necessary. We define collector exergy efficiency [eta]xc to be [eta]xc=Exo/Exu. The relation between collector exergy efficiency and width of plate together with layer number of cover is also analysed.

Suggested Citation

  • Xiaowu, Wang & Ben, Hua, 2005. "Exergy analysis of domestic-scale solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 638-645, December.
  • Handle: RePEc:eee:rensus:v:9:y:2005:i:6:p:638-645
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(04)00072-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iniyan, S & Sumathy, K, 2000. "An optimal renewable energy model for various end-uses," Energy, Elsevier, vol. 25(6), pages 563-575.
    2. Koroneos, Christopher & Spachos, Thomas & Moussiopoulos, Nikolaos, 2003. "Exergy analysis of renewable energy sources," Renewable Energy, Elsevier, vol. 28(2), pages 295-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Girard, A. & Gago, E.J. & Ordoñez, J. & Muneer, T., 2016. "Spain's energy outlook: A review of PV potential and energy export," Renewable Energy, Elsevier, vol. 86(C), pages 703-715.
    2. Hepbasli, Arif, 2008. "A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 593-661, April.
    3. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    4. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    5. Hossain, M.S. & Saidur, R. & Fayaz, H. & Rahim, N.A. & Islam, M.R. & Ahamed, J.U. & Rahman, M.M., 2011. "Review on solar water heater collector and thermal energy performance of circulating pipe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3801-3812.
    6. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.
    7. Torío, H. & Schmidt, D., 2010. "Framework for analysis of solar energy systems in the built environment from an exergy perspective," Renewable Energy, Elsevier, vol. 35(12), pages 2689-2697.
    8. Kashani Lotfabadi, Alireza & Hajinezhad, Ahmad & Kasaeian, Alibakhsh & Moosavian, Seyed Farhan, 2022. "Energetic, economic, environmental and climatic analysis of a solar combisystem for different consumption usages with PSI method ranking," Renewable Energy, Elsevier, vol. 197(C), pages 178-196.
    9. Balamurali Duraivel & Natarajan Muthuswamy & Saboor Shaik & Erdem Cuce & Abdulhameed Babatunde Owolabi & Hong Xian Li & Miroslava Kavgic, 2023. "Extensive Analysis of a Reinvigorated Solar Water Heating System Using Low-Density Polyethylene Glazing," Energies, MDPI, vol. 16(16), pages 1-24, August.
    10. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    11. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    2. Cho, Honghyun, 2015. "Comparative study on the performance and exergy efficiency of a solar hybrid heat pump using R22 and R744," Energy, Elsevier, vol. 93(P2), pages 1267-1276.
    3. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    4. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    5. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    6. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    7. Stanek, Wojciech & Simla, Tomasz & Gazda, Wiesław, 2019. "Exergetic and thermo-ecological assessment of heat pump supported by electricity from renewable sources," Renewable Energy, Elsevier, vol. 131(C), pages 404-412.
    8. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    9. Iwona Bąk & Anna Spoz & Magdalena Zioło & Marek Dylewski, 2021. "Dynamic Analysis of the Similarity of Objects in Research on the Use of Renewable Energy Resources in European Union Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    10. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Baskut, Omer & Ozgener, Onder & Ozgener, Leyla, 2010. "Effects of meteorological variables on exergetic efficiency of wind turbine power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3237-3241, December.
    12. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
    13. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "Exergetic and exergoeconomic aspects of wind energy systems in achieving sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2810-2825, August.
    14. Chen, Hua-Wei & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2012. "The case study of energy flow analysis and strategy in pulp and paper industry," Energy Policy, Elsevier, vol. 43(C), pages 448-455.
    15. Sampaio, Henrique César & Dias, Rubens Alves & Balestieri, José Antônio Perrella, 2013. "Sustainable urban energy planning: The case study of a tropical city," Applied Energy, Elsevier, vol. 104(C), pages 924-935.
    16. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2009. "Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment," Renewable Energy, Elsevier, vol. 34(7), pages 1833-1847.
    17. Duic, Neven & Krajacic, Goran & da Graça Carvalho, Maria, 2008. "RenewIslands methodology for sustainable energy and resource planning for islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1032-1062, May.
    18. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    19. Edwin, M. & Sekhar, S. Joseph, 2015. "Thermal performance of milk chilling units in remote villages working with the combination of biomass, biogas and solar energies," Energy, Elsevier, vol. 91(C), pages 842-851.
    20. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:9:y:2005:i:6:p:638-645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.