IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i8p3801-3812.html
   My bibliography  Save this article

Review on solar water heater collector and thermal energy performance of circulating pipe

Author

Listed:
  • Hossain, M.S.
  • Saidur, R.
  • Fayaz, H.
  • Rahim, N.A.
  • Islam, M.R.
  • Ahamed, J.U.
  • Rahman, M.M.

Abstract

The effect of thermal conductivity of the absorber plate of a solar collector on the performance of a thermo-siphon solar water heater is found by using the alternative simulation system. The system is assumed to be supplied of hot water at 50°C and 80°C whereas both are used in domestic and industrial purposes, respectively. According to the Rand distribution profile 50, 125 and 250l of hot water are consumed daily. The condition shows that the annual solar fraction of the planning functions and the collector's configuration factors are strongly dependent on the thermal conductivity for its lower values. The less dependence is observed beyond a thermal conductivity of 50W/m°C for the solar improper fraction and above 100W/m°C for the configuration factors. In addition, the number of air ducts and total mass flow rate are taken to show that higher collector efficiency is obtained under the suitable designing and operating parameters. Different heat transfer mechanisms, adding natural convection, vapor boiling, cell nucleus boiling and film wise condensation is observed in the thermo-siphon solar water heater with various solar radiations. From this study, it is found that the solar water heater with a siphon system achieves system characteristic efficiency of 18% higher than that of the conventional system by reducing heat loss for the thermo-siphon solar water heater.

Suggested Citation

  • Hossain, M.S. & Saidur, R. & Fayaz, H. & Rahim, N.A. & Islam, M.R. & Ahamed, J.U. & Rahman, M.M., 2011. "Review on solar water heater collector and thermal energy performance of circulating pipe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3801-3812.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3801-3812
    DOI: 10.1016/j.rser.2011.06.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111002541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.06.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    2. Gupta, M.K. & Kaushik, S.C., 2010. "Exergy analysis and investigation for various feed water heaters of direct steam generation solar–thermal power plant," Renewable Energy, Elsevier, vol. 35(6), pages 1228-1235.
    3. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    4. Gaur, M.K. & Tiwari, G.N., 2010. "Optimization of number of collectors for integrated PV/T hybrid active solar still," Applied Energy, Elsevier, vol. 87(5), pages 1763-1772, May.
    5. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    6. Chien, C.C. & Kung, C.K. & Chang, C.C. & Lee, W.S. & Jwo, C.S. & Chen, S.L., 2011. "Theoretical and experimental investigations of a two-phase thermosyphon solar water heater," Energy, Elsevier, vol. 36(1), pages 415-423.
    7. Tanaka, Hiroshi, 2011. "Solar thermal collector augmented by flat plate booster reflector: Optimum inclination of collector and reflector," Applied Energy, Elsevier, vol. 88(4), pages 1395-1404, April.
    8. He, Wei & Chow, Tin-Tai & Ji, Jie & Lu, Jianping & Pei, Gang & Chan, Lok-shun, 2006. "Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water," Applied Energy, Elsevier, vol. 83(3), pages 199-210, March.
    9. Hj. Othman, Mohd. Yusof & Yatim, Baharudin & Sopian, Kamaruzzaman & Abu Bakar, Mohd. Nazari, 2005. "Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins," Renewable Energy, Elsevier, vol. 30(13), pages 2005-2017.
    10. Saidur, R. & Islam, M.R. & Rahim, N.A. & Solangi, K.H., 2010. "A review on global wind energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1744-1762, September.
    11. Shukla, Anant & Buddhi, D. & Sawhney, R.L., 2009. "Solar water heaters with phase change material thermal energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2119-2125, October.
    12. Xiaowu, Wang & Ben, Hua, 2005. "Exergy analysis of domestic-scale solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 638-645, December.
    13. Tiwari, Arvind & Dubey, Swapnil & Sandhu, G.S. & Sodha, M.S. & Anwar, S.I., 2009. "Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes," Applied Energy, Elsevier, vol. 86(12), pages 2592-2597, December.
    14. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    15. Jeffrey Kuo, Chung-Feng & Su, Te-Li & Jhang, Po-Ruei & Huang, Chao-Yang & Chiu, Chin-Hsun, 2011. "Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing," Energy, Elsevier, vol. 36(5), pages 3554-3562.
    16. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    17. Roonprasang, Natthaphon & Namprakai, Pichai & Pratinthong, Naris, 2008. "Experimental studies of a new solar water heater system using a solar water pump," Energy, Elsevier, vol. 33(4), pages 639-646.
    18. Saidur, R. & Rahim, N.A. & Hasanuzzaman, M., 2010. "A review on compressed-air energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1135-1153, May.
    19. Smyth, M. & Eames, P.C. & Norton, B., 2006. "Integrated collector storage solar water heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 503-538, December.
    20. Huang, Jinbao & Pu, Shaoxuan & Gao, Wenfeng & Que, Yi, 2010. "Experimental investigation on thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger," Energy, Elsevier, vol. 35(9), pages 3563-3568.
    21. Wu, Shuangmao & Fang, Guiyin & Liu, Xu, 2011. "Dynamic discharging characteristics simulation on solar heat storage system with spherical capsules using paraffin as heat storage material," Renewable Energy, Elsevier, vol. 36(4), pages 1190-1195.
    22. Garnier, C. & Currie, J. & Muneer, T., 2009. "Integrated collector storage solar water heater: Temperature stratification," Applied Energy, Elsevier, vol. 86(9), pages 1465-1469, September.
    23. Saidur, R. & Hasanuzzaman, M. & Yogeswaran, S. & Mohammed, H.A. & Hossain, M.S., 2010. "An end-use energy analysis in a Malaysian public hospital," Energy, Elsevier, vol. 35(12), pages 4780-4785.
    24. Li, Y.W. & Wang, R.Z. & Wu, J.Y. & Xu, Y.X., 2007. "Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater," Energy, Elsevier, vol. 32(8), pages 1361-1374.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    2. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    3. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    4. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
    6. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & de Risi, Arturo, 2016. "Innovation in flat solar thermal collectors: A review of the last ten years experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1141-1159.
    7. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    8. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    9. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    10. Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
    11. Gautam, Abhishek & Chamoli, Sunil & Kumar, Alok & Singh, Satyendra, 2017. "A review on technical improvements, economic feasibility and world scenario of solar water heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 541-562.
    12. Ibrahim, Adnan & Othman, Mohd Yusof & Ruslan, Mohd Hafidz & Mat, Sohif & Sopian, Kamaruzzaman, 2011. "Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 352-365, January.
    13. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    14. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    15. Sardarabadi, Mohammad & Passandideh-Fard, Mohammad & Zeinali Heris, Saeed, 2014. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)," Energy, Elsevier, vol. 66(C), pages 264-272.
    16. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    17. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    18. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    19. Ayompe, L.M. & Duffy, A. & Mc Keever, M. & Conlon, M. & McCormack, S.J., 2011. "Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate," Energy, Elsevier, vol. 36(5), pages 3370-3378.
    20. Pedro Orgeira-Crespo & Carlos Ulloa & José M. Núñez & José A. Pérez, 2020. "Development of a Transient Model of a Lightweight, Portable and Flexible Air-Based PV-T Module for UAV Shelter Hangars," Energies, MDPI, vol. 13(11), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:8:p:3801-3812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.